Análise de energia incidente em redes de distribuição: estimação, estratégias de mitigação e medidas de proteção

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Camponogara, Marina lattes
Orientador(a): Bernardon, Daniel Pinheiro lattes
Banca de defesa: Marchesan, Tiago Bandeira, Ramos, Maicon Jaderson Silveira
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Centro de Tecnologia
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Engenharia Elétrica
País: Brasil
Palavras-chave em Português:
EPI
Palavras-chave em Inglês:
PPE
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufsm.br/handle/1/22650
Resumo: An electric arc occurs when the air’s ionization is sufficient to allow the passage of electric current and arises from two or more conductors separated by a given spacing subjected to a short-circuit, either by improper contact or insulation failure, or even during the routine operation of electrical equipment, such as in the process of opening and closing maneuvering devices. A series of risks are associated to electric arc, the thermal risk being accepted as the most significant, as accidents documented as caused by this type of phenomenon are predominantly burns. Large amounts of energy are released during the occurrence of an electric arc, the thermal energy being called incident energy. Within the arc flash risk assessment process, the incident energy analysis is employed to predict the incident energy levels generated in a possible arc flash event and, as result of this analysis, it is possible to determine the appropriate protective equipment for the work in that site, whether there is the need to employ incident energy mitigation techniques, and whether the work can actually be carried out in an energized location or whether it will be necessary for the point to be de-energized. In this work, an incident energy analysis is proposed for distribution grids, in which incident energy levels must be estimated, mitigation techniques proposed when necessary, and worker protection measures determined. The employed grids in the case studies are the IEEE 13-Node and IEEE 34-Bus grids, as they have points within the voltage range of the selected incident energy estimation guide, the IEEE Std 1584. Both 2002 and 2018 models are used to obtain a comparison among the results. The ATPDraw software is used to simulate bolted three-phase faults at the points of interest and the clothing and other pertinent protective equipment are chosen from NFPA 70E-2021. The results of the case studies confirm the direct relation between the incident energy and the arc duration, in addition to highlighting the difference among the results obtained using the 2002 and 2018 models as more expressive for scenarios with horizontally oriented conductors and in low voltage systems, mainly due to the arc current variation factor. For medium voltage systems, the spacing range considered in the IEEE Std 1584-2002’s empirical model is different from the IEEE Std 1584-2018 model, forcing the use of the theoretical model, based on the Lee model, which implies in more conservative results. Finally, considering the voltage ranges of both models, there is a limitation regarding their application in distribution systems, as they do not include all voltages used in medium and high voltage grids.
id UFSM_904c065ad022e58e4d043847ae5c97fd
oai_identifier_str oai:repositorio.ufsm.br:1/22650
network_acronym_str UFSM
network_name_str Biblioteca Digital de Teses e Dissertações do UFSM
repository_id_str
spelling 2021-10-28T19:37:44Z2021-10-28T19:37:44Z2021-04-30http://repositorio.ufsm.br/handle/1/22650An electric arc occurs when the air’s ionization is sufficient to allow the passage of electric current and arises from two or more conductors separated by a given spacing subjected to a short-circuit, either by improper contact or insulation failure, or even during the routine operation of electrical equipment, such as in the process of opening and closing maneuvering devices. A series of risks are associated to electric arc, the thermal risk being accepted as the most significant, as accidents documented as caused by this type of phenomenon are predominantly burns. Large amounts of energy are released during the occurrence of an electric arc, the thermal energy being called incident energy. Within the arc flash risk assessment process, the incident energy analysis is employed to predict the incident energy levels generated in a possible arc flash event and, as result of this analysis, it is possible to determine the appropriate protective equipment for the work in that site, whether there is the need to employ incident energy mitigation techniques, and whether the work can actually be carried out in an energized location or whether it will be necessary for the point to be de-energized. In this work, an incident energy analysis is proposed for distribution grids, in which incident energy levels must be estimated, mitigation techniques proposed when necessary, and worker protection measures determined. The employed grids in the case studies are the IEEE 13-Node and IEEE 34-Bus grids, as they have points within the voltage range of the selected incident energy estimation guide, the IEEE Std 1584. Both 2002 and 2018 models are used to obtain a comparison among the results. The ATPDraw software is used to simulate bolted three-phase faults at the points of interest and the clothing and other pertinent protective equipment are chosen from NFPA 70E-2021. The results of the case studies confirm the direct relation between the incident energy and the arc duration, in addition to highlighting the difference among the results obtained using the 2002 and 2018 models as more expressive for scenarios with horizontally oriented conductors and in low voltage systems, mainly due to the arc current variation factor. For medium voltage systems, the spacing range considered in the IEEE Std 1584-2002’s empirical model is different from the IEEE Std 1584-2018 model, forcing the use of the theoretical model, based on the Lee model, which implies in more conservative results. Finally, considering the voltage ranges of both models, there is a limitation regarding their application in distribution systems, as they do not include all voltages used in medium and high voltage grids.A ocorrência de um arco elétrico se dá quando a ionização do ar é suficiente para possibilitar a passagem de corrente elétrica e decorre de dois ou mais condutores separados por um dado espaçamento submetidos a um curto-circuito, seja por contato indevido ou falha de isolamento, ou ainda durante a operação rotineira dos equipamentos elétricos, como no processo de abertura e fechamento dos dispositivos de manobra. Uma série de riscos estão associados ao arco elétrico, sendo o risco térmico aceito como o mais significante, visto que acidentes documentados como causados por esse tipo de fenômeno são predominantemente queimaduras. Grandes quantidades de energia são liberadas durante a ocorrência de um arco elétrico, sendo a energia térmica denominada energia incidente. Dentro do processo de avaliação do risco de arco elétrico, a análise de energia incidente é empregada para prever os níveis de energia incidente gerados em um possível evento de arco elétrico e, como resultado dessa análise, é possível determinar os equipamentos de proteção adequados para o trabalho naquele sítio, se há necessidade de empregar técnicas de mitigação de energia incidente e, ainda, se o trabalho poderá de fato ser realizado em local energizado ou se será necessário que o ponto seja desenergizado. Neste trabalho, uma análise de energia incidente é proposta para redes de distribuição, na qual se deve estimar os níveis de energia incidente, propor técnicas de mitigação quando necessário e determinar medidas de proteção ao trabalhador. As redes empregadas nos estudos de caso são as redes IEEE 13-Node e IEEE 34-Bus, pois contam com sítios dentro do intervalo de tensão do guia de estimativa de energia incidente selecionado, o IEEE Std 1584. Ambos os modelos de 2002 e de 2018 são empregados, a fim de se obter uma comparação entre os resultados. O software ATPDraw é utilizado para simular faltas trifásicas francas nos pontos de interesse e as vestimentas e demais equipamentos de proteção pertinentes são escolhidos a partir da NFPA 70E-2021. Os resultados dos estudos de caso confirmam a relação direta entre a energia incidente e a duração do arco elétrico, além de salientar a diferença entre os resultados obtidos empregando o modelo de 2002 e o de 2018 como mais expressiva para cenários com condutores orientados horizontalmente e em sistemas de baixa tensão, em função principalmente do fator de variação da corrente de arco. Para sistemas de média tensão, o intervalo de espaçamentos considerados no modelo empírico do IEEE Std 1584-2002 é distinto do modelo do IEEE Std 1584-2018, forçando o uso do modelo teórico, baseado no modelo de Lee, o que implica em resultados mais conservadores. Por fim, considerando-se o intervalo de tensão de ambos os modelos, há uma limitação quanto à aplicação deles em sistemas de distribuição, visto que não contemplam todas as tensões empregadas nas redes de média e alta tensão.porUniversidade Federal de Santa MariaCentro de TecnologiaPrograma de Pós-Graduação em Engenharia ElétricaUFSMBrasilEngenharia ElétricaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessArco elétricoATPDrawEnergia incidenteEPIIEEE Std 1584-2002IEEE Std 1584-2018NFPA 70E-2021Queimaduras elétricasRedes de distribuiçãoTécnicas de mitigaçãoVestimentas de proteção térmicaDistribution gridsElectric arcElectrical burnsIncident energyMitigation techniquesPPEThermal protection clothingCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAAnálise de energia incidente em redes de distribuição: estimação, estratégias de mitigação e medidas de proteçãoIncident energy analysis in distribution networks: estimation, mitigation strategies and protection measuresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisBernardon, Daniel Pinheirohttp://lattes.cnpq.br/6004612278397270Marchesan, Tiago BandeiraRamos, Maicon Jaderson Silveirahttp://lattes.cnpq.br/8323035276948569Camponogara, Marina300400000007600600600425ebf67-3fcd-4c31-8378-e6edab478375c8a3ad94-f1ea-4612-8b2e-ba3e7151c19a74536033-85a5-428c-bc54-3c0d231352b0777938fc-329b-468d-9641-f4e4c65cbb02reponame:Biblioteca Digital de Teses e Dissertações do UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALDIS_PPGEE_2021_CAMPONOGARA_MARINA.pdfDIS_PPGEE_2021_CAMPONOGARA_MARINA.pdfDissertação de Mestradoapplication/pdf1681376http://repositorio.ufsm.br/bitstream/1/22650/1/DIS_PPGEE_2021_CAMPONOGARA_MARINA.pdf77acef3b449a052246aa5c2c5197ed53MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/22650/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/22650/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTDIS_PPGEE_2021_CAMPONOGARA_MARINA.pdf.txtDIS_PPGEE_2021_CAMPONOGARA_MARINA.pdf.txtExtracted texttext/plain191870http://repositorio.ufsm.br/bitstream/1/22650/4/DIS_PPGEE_2021_CAMPONOGARA_MARINA.pdf.txtc7042af63bc458d0800f46f021065eefMD54THUMBNAILDIS_PPGEE_2021_CAMPONOGARA_MARINA.pdf.jpgDIS_PPGEE_2021_CAMPONOGARA_MARINA.pdf.jpgIM Thumbnailimage/jpeg4516http://repositorio.ufsm.br/bitstream/1/22650/5/DIS_PPGEE_2021_CAMPONOGARA_MARINA.pdf.jpg7e984f5d949632689cd62a1507f8510bMD551/226502021-12-31 10:24:25.051oai:repositorio.ufsm.br:1/22650TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKBiblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-12-31T13:24:25Biblioteca Digital de Teses e Dissertações do UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Análise de energia incidente em redes de distribuição: estimação, estratégias de mitigação e medidas de proteção
dc.title.alternative.eng.fl_str_mv Incident energy analysis in distribution networks: estimation, mitigation strategies and protection measures
title Análise de energia incidente em redes de distribuição: estimação, estratégias de mitigação e medidas de proteção
spellingShingle Análise de energia incidente em redes de distribuição: estimação, estratégias de mitigação e medidas de proteção
Camponogara, Marina
Arco elétrico
ATPDraw
Energia incidente
EPI
IEEE Std 1584-2002
IEEE Std 1584-2018
NFPA 70E-2021
Queimaduras elétricas
Redes de distribuição
Técnicas de mitigação
Vestimentas de proteção térmica
Distribution grids
Electric arc
Electrical burns
Incident energy
Mitigation techniques
PPE
Thermal protection clothing
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Análise de energia incidente em redes de distribuição: estimação, estratégias de mitigação e medidas de proteção
title_full Análise de energia incidente em redes de distribuição: estimação, estratégias de mitigação e medidas de proteção
title_fullStr Análise de energia incidente em redes de distribuição: estimação, estratégias de mitigação e medidas de proteção
title_full_unstemmed Análise de energia incidente em redes de distribuição: estimação, estratégias de mitigação e medidas de proteção
title_sort Análise de energia incidente em redes de distribuição: estimação, estratégias de mitigação e medidas de proteção
author Camponogara, Marina
author_facet Camponogara, Marina
author_role author
dc.contributor.advisor1.fl_str_mv Bernardon, Daniel Pinheiro
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6004612278397270
dc.contributor.referee1.fl_str_mv Marchesan, Tiago Bandeira
dc.contributor.referee2.fl_str_mv Ramos, Maicon Jaderson Silveira
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8323035276948569
dc.contributor.author.fl_str_mv Camponogara, Marina
contributor_str_mv Bernardon, Daniel Pinheiro
Marchesan, Tiago Bandeira
Ramos, Maicon Jaderson Silveira
dc.subject.por.fl_str_mv Arco elétrico
ATPDraw
Energia incidente
EPI
IEEE Std 1584-2002
IEEE Std 1584-2018
NFPA 70E-2021
Queimaduras elétricas
Redes de distribuição
Técnicas de mitigação
Vestimentas de proteção térmica
topic Arco elétrico
ATPDraw
Energia incidente
EPI
IEEE Std 1584-2002
IEEE Std 1584-2018
NFPA 70E-2021
Queimaduras elétricas
Redes de distribuição
Técnicas de mitigação
Vestimentas de proteção térmica
Distribution grids
Electric arc
Electrical burns
Incident energy
Mitigation techniques
PPE
Thermal protection clothing
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
dc.subject.eng.fl_str_mv Distribution grids
Electric arc
Electrical burns
Incident energy
Mitigation techniques
PPE
Thermal protection clothing
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description An electric arc occurs when the air’s ionization is sufficient to allow the passage of electric current and arises from two or more conductors separated by a given spacing subjected to a short-circuit, either by improper contact or insulation failure, or even during the routine operation of electrical equipment, such as in the process of opening and closing maneuvering devices. A series of risks are associated to electric arc, the thermal risk being accepted as the most significant, as accidents documented as caused by this type of phenomenon are predominantly burns. Large amounts of energy are released during the occurrence of an electric arc, the thermal energy being called incident energy. Within the arc flash risk assessment process, the incident energy analysis is employed to predict the incident energy levels generated in a possible arc flash event and, as result of this analysis, it is possible to determine the appropriate protective equipment for the work in that site, whether there is the need to employ incident energy mitigation techniques, and whether the work can actually be carried out in an energized location or whether it will be necessary for the point to be de-energized. In this work, an incident energy analysis is proposed for distribution grids, in which incident energy levels must be estimated, mitigation techniques proposed when necessary, and worker protection measures determined. The employed grids in the case studies are the IEEE 13-Node and IEEE 34-Bus grids, as they have points within the voltage range of the selected incident energy estimation guide, the IEEE Std 1584. Both 2002 and 2018 models are used to obtain a comparison among the results. The ATPDraw software is used to simulate bolted three-phase faults at the points of interest and the clothing and other pertinent protective equipment are chosen from NFPA 70E-2021. The results of the case studies confirm the direct relation between the incident energy and the arc duration, in addition to highlighting the difference among the results obtained using the 2002 and 2018 models as more expressive for scenarios with horizontally oriented conductors and in low voltage systems, mainly due to the arc current variation factor. For medium voltage systems, the spacing range considered in the IEEE Std 1584-2002’s empirical model is different from the IEEE Std 1584-2018 model, forcing the use of the theoretical model, based on the Lee model, which implies in more conservative results. Finally, considering the voltage ranges of both models, there is a limitation regarding their application in distribution systems, as they do not include all voltages used in medium and high voltage grids.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-10-28T19:37:44Z
dc.date.available.fl_str_mv 2021-10-28T19:37:44Z
dc.date.issued.fl_str_mv 2021-04-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/22650
url http://repositorio.ufsm.br/handle/1/22650
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 300400000007
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.authority.fl_str_mv 425ebf67-3fcd-4c31-8378-e6edab478375
c8a3ad94-f1ea-4612-8b2e-ba3e7151c19a
74536033-85a5-428c-bc54-3c0d231352b0
777938fc-329b-468d-9641-f4e4c65cbb02
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Tecnologia
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Biblioteca Digital de Teses e Dissertações do UFSM
collection Biblioteca Digital de Teses e Dissertações do UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/22650/1/DIS_PPGEE_2021_CAMPONOGARA_MARINA.pdf
http://repositorio.ufsm.br/bitstream/1/22650/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/22650/3/license.txt
http://repositorio.ufsm.br/bitstream/1/22650/4/DIS_PPGEE_2021_CAMPONOGARA_MARINA.pdf.txt
http://repositorio.ufsm.br/bitstream/1/22650/5/DIS_PPGEE_2021_CAMPONOGARA_MARINA.pdf.jpg
bitstream.checksum.fl_str_mv 77acef3b449a052246aa5c2c5197ed53
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
c7042af63bc458d0800f46f021065eef
7e984f5d949632689cd62a1507f8510b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1793240179326058496