Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campo

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Dhein, Guilherme
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/26339/00130000001jm
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
BR
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/3700
Resumo: This thesis presents two new routing problems, both with objective functions focused on relative positioning of teams during the routing horizon. The relative positioning results in temporal and spatial dependencies among routes and is quantified with a nonlinear dispersion metric, designed to evaluate the instantaneous distances among teams over a time interval. This metric allows the design of objective functions to approximate teams during routes execution, when minimized, or disperse them, when maximized. Both approximation and dispersion are important routing characteristics in some practical applications, and two new optimization problems are proposed with these opposite objectives. The first one is a variation of the Multiple Traveling Salesman Problem, and its goal is to find a set of tours where the salesmen travel close to each other, minimizing dispersion. A Local Search Genetic Algorithm is proposed to solve the problem. It includes specialized genetic operators and neighborhoods. A new set of benchmark instances is proposed, adapted for the new problem from literature instances. Computational results show that the proposed approach provides solutions with the desired characteristics of minimal dispersion. The second problem is a bi-objective arc routing problem in which routes must be constructed in order to maximize collected profit and dispersion of teams. The maximization of the dispersion metric fosters the scattering of the teams during routing procedure. Usually, profit and dispersion objectives are conflicting, and by using a bi-objective approach the decision maker is able to choose a trade-off between collecting profits and scattering teams. Two solution methods are proposed, a Multi-objective Genetic Algorithm and a Multi-objective Genetic Local Search Algorithm, both specialized in order to exploit the characteristics of the problem. It is demonstrated, by means of computational experiments on a new set of benchmark instances, that the proposed approach provides approximation sets with the desired characteristics.
id UFSM_a39c965c1bd807f4d42efbc190f94f53
oai_identifier_str oai:repositorio.ufsm.br:1/3700
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campoVehicle routing problems with temporal and spatial dependencies among routesAlgoritmo genéticoAlgoritmo genético com busca local multiobjetivoRotas sincronizadasMultiple traveling salesman problemArc routingDispersion metricDispersion minimizationDispersion maximizationProfit collectionGenetic algorithmMultiobjective genetic local search algorithmSynchronized routesCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAThis thesis presents two new routing problems, both with objective functions focused on relative positioning of teams during the routing horizon. The relative positioning results in temporal and spatial dependencies among routes and is quantified with a nonlinear dispersion metric, designed to evaluate the instantaneous distances among teams over a time interval. This metric allows the design of objective functions to approximate teams during routes execution, when minimized, or disperse them, when maximized. Both approximation and dispersion are important routing characteristics in some practical applications, and two new optimization problems are proposed with these opposite objectives. The first one is a variation of the Multiple Traveling Salesman Problem, and its goal is to find a set of tours where the salesmen travel close to each other, minimizing dispersion. A Local Search Genetic Algorithm is proposed to solve the problem. It includes specialized genetic operators and neighborhoods. A new set of benchmark instances is proposed, adapted for the new problem from literature instances. Computational results show that the proposed approach provides solutions with the desired characteristics of minimal dispersion. The second problem is a bi-objective arc routing problem in which routes must be constructed in order to maximize collected profit and dispersion of teams. The maximization of the dispersion metric fosters the scattering of the teams during routing procedure. Usually, profit and dispersion objectives are conflicting, and by using a bi-objective approach the decision maker is able to choose a trade-off between collecting profits and scattering teams. Two solution methods are proposed, a Multi-objective Genetic Algorithm and a Multi-objective Genetic Local Search Algorithm, both specialized in order to exploit the characteristics of the problem. It is demonstrated, by means of computational experiments on a new set of benchmark instances, that the proposed approach provides approximation sets with the desired characteristics.Esta tese apresenta dois novos problemas de roteamento, ambos com funções objetivo voltadas para o posicionamento relativo das equipes durante o horizonte de roteamento. O posicionamento relativo resulta em uma dependência temporal e espacial entre rotas e é quantificado com uma métrica de dispersão não-linear, projetada para avaliar as distâncias instantâneas entre as equipes ao longo de um intervalo de tempo. Esta métrica permite a concepção de funções objetivo para aproximar as equipes durante a execução das rotas, quando minimizada, ou para dispersá-las, quando maximizada. Tanto a aproximação quanto a dispersão são características importantes de roteamento em algumas aplicações práticas, e dois novos problemas de otimização são propostos com esses objetivos opostos. O primeiro é uma variação do Problema de Múltiplos Caixeiros Viajantes, e seu objetivo é encontrar um conjunto de rotas em que os caixeiros viajam próximos uns dos outros, minimizando a dispersão. Um Algoritmo Genético com Busca Local é proposto para resolver o problema. Ele inclui operadores genéticos e vizinhanças especializados. Um novo conjunto de instâncias é proposto, adaptado para o novo problema de instâncias da literatura. Resultados computacionais mostram que a abordagem proposta proporciona soluções com as características desejadas de dispersão mínima. O segundo problema é um problema de roteamento de arcos biobjetivo em que as rotas devem ser construídas de modo a maximizar o lucro recolhido e o distanciamento entre as equipes. A maximização da métrica promove a dispersão das equipes durante a execução das rotas. Normalmente, os objetivos de lucro e dispersão são conflitantes, e com uma abordagem biobjetivo o tomador de decisão é capaz de avaliar a troca entre a coleta de lucros e a dispersão de equipes. Dois métodos de solução são propostos, um Algoritmo Genético Multiobjetivo e um Algoritmo Genético Multiobjetivo com Busca Local, ambos especializados para explorar as características do problema. É demonstrado, por meio de experimentos computacionais sobre um novo conjunto de instâncias, que a abordagem proposta fornece conjuntos de aproximação com as características desejadas.Universidade Federal de Santa MariaBREngenharia ElétricaUFSMPrograma de Pós-Graduação em Engenharia ElétricaCardoso Junior, Ghendyhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4770600A7Buriol, Luciana Saletehttp://lattes.cnpq.br/8337454058604654Lyra Filho, Christianohttp://lattes.cnpq.br/4217731655224539Santos, José Vicente Canto doshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728269Y8Müller, Felipe Martinshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723058U1Dhein, Guilherme2017-05-252017-05-252016-08-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfDHEIN, Guilherme. Vehicle routing problems with temporal and spatial dependencies among routes. 2016. 151 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2016.http://repositorio.ufsm.br/handle/1/3700ark:/26339/00130000001jmporinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2017-07-25T13:58:28Zoai:repositorio.ufsm.br:1/3700Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2017-07-25T13:58:28Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campo
Vehicle routing problems with temporal and spatial dependencies among routes
title Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campo
spellingShingle Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campo
Dhein, Guilherme
Algoritmo genético
Algoritmo genético com busca local multiobjetivo
Rotas sincronizadas
Multiple traveling salesman problem
Arc routing
Dispersion metric
Dispersion minimization
Dispersion maximization
Profit collection
Genetic algorithm
Multiobjective genetic local search algorithm
Synchronized routes
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campo
title_full Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campo
title_fullStr Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campo
title_full_unstemmed Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campo
title_sort Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campo
author Dhein, Guilherme
author_facet Dhein, Guilherme
author_role author
dc.contributor.none.fl_str_mv Cardoso Junior, Ghendy
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4770600A7
Buriol, Luciana Salete
http://lattes.cnpq.br/8337454058604654
Lyra Filho, Christiano
http://lattes.cnpq.br/4217731655224539
Santos, José Vicente Canto dos
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728269Y8
Müller, Felipe Martins
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723058U1
dc.contributor.author.fl_str_mv Dhein, Guilherme
dc.subject.por.fl_str_mv Algoritmo genético
Algoritmo genético com busca local multiobjetivo
Rotas sincronizadas
Multiple traveling salesman problem
Arc routing
Dispersion metric
Dispersion minimization
Dispersion maximization
Profit collection
Genetic algorithm
Multiobjective genetic local search algorithm
Synchronized routes
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Algoritmo genético
Algoritmo genético com busca local multiobjetivo
Rotas sincronizadas
Multiple traveling salesman problem
Arc routing
Dispersion metric
Dispersion minimization
Dispersion maximization
Profit collection
Genetic algorithm
Multiobjective genetic local search algorithm
Synchronized routes
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description This thesis presents two new routing problems, both with objective functions focused on relative positioning of teams during the routing horizon. The relative positioning results in temporal and spatial dependencies among routes and is quantified with a nonlinear dispersion metric, designed to evaluate the instantaneous distances among teams over a time interval. This metric allows the design of objective functions to approximate teams during routes execution, when minimized, or disperse them, when maximized. Both approximation and dispersion are important routing characteristics in some practical applications, and two new optimization problems are proposed with these opposite objectives. The first one is a variation of the Multiple Traveling Salesman Problem, and its goal is to find a set of tours where the salesmen travel close to each other, minimizing dispersion. A Local Search Genetic Algorithm is proposed to solve the problem. It includes specialized genetic operators and neighborhoods. A new set of benchmark instances is proposed, adapted for the new problem from literature instances. Computational results show that the proposed approach provides solutions with the desired characteristics of minimal dispersion. The second problem is a bi-objective arc routing problem in which routes must be constructed in order to maximize collected profit and dispersion of teams. The maximization of the dispersion metric fosters the scattering of the teams during routing procedure. Usually, profit and dispersion objectives are conflicting, and by using a bi-objective approach the decision maker is able to choose a trade-off between collecting profits and scattering teams. Two solution methods are proposed, a Multi-objective Genetic Algorithm and a Multi-objective Genetic Local Search Algorithm, both specialized in order to exploit the characteristics of the problem. It is demonstrated, by means of computational experiments on a new set of benchmark instances, that the proposed approach provides approximation sets with the desired characteristics.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-26
2017-05-25
2017-05-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv DHEIN, Guilherme. Vehicle routing problems with temporal and spatial dependencies among routes. 2016. 151 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2016.
http://repositorio.ufsm.br/handle/1/3700
dc.identifier.dark.fl_str_mv ark:/26339/00130000001jm
identifier_str_mv DHEIN, Guilherme. Vehicle routing problems with temporal and spatial dependencies among routes. 2016. 151 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2016.
ark:/26339/00130000001jm
url http://repositorio.ufsm.br/handle/1/3700
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847153323529994240