Algoritmos híbridos para a solução do "Team Orienteering Problem"

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Macêdo, Eduardo Állysson Alves Gonçalves [UNIFESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/48912/0013000025rxw
Idioma: por
Instituição de defesa: Universidade Federal de São Paulo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.unifesp.br/handle/11600/68965
Resumo: Neste trabalho, o Team Orienteering Problem (TOP) é resolvido utilizando dois métodos híbridos resultantes da integração da metaheurística Iterated Local Search (ILS) com a matheuristic Fix-and-Optimize (F&O) e da metaheurística Biased Random-Key Genetic Algorithm (BRKGA) com o F&O. O Team Orienteering Problem é um problema de otimização combinatória NP-difícil pertencente à classe de problemas de roteamento com prêmios. Seu objetivo é maximizar um prêmio total coletado por uma frota de veículos, determinando quais localidades são visitadas por cada veículo e em que sequência, restrito ao tempo máximo de duração de cada rota. A implementação do ILS contou com heurísticas de busca local contendo métricas específicas para a inclusão ou substituição de localidades. De modo semelhante, um decoder específico para o TOP foi proposto na implementação do BRKGA. Quanto ao F&O, foi utilizada, para a solução dos subproblemas, uma definição de subconjuntos de variáveis baseada em nós adjacentes, priorizando a inclusão dos nós e variáveis associadas em cada subconjunto baseada na distância dos nós não visitados aos nós pertencentes às rotas. Todas as implementações foram realizadas em linguagem de programação Julia e o Gurobi foi utilizado como pacote de otimização para a solução dos problemas de programação inteira mista no âmbito do F&O. Para analisar a efetividade dos métodos propostos, foram realizados experimentos computacionais com 3 conjuntos de instâncias de maior porte constantes da literatura, contendo ao todo 179 instâncias com número de localidades variando de 100 a 400 e os algoritmos foram executados 20 vezes para cada uma das instâncias. O ILS + F&O obteve resultados idênticos aos das melhores soluções conhecidas em 94 instâncias e um desvio percentual médio de 0,53% com melhor desempenho nas instâncias de menor porte. Já o BRKGA + F&O alcançou um melhor desempenho nas instâncias de grande porte e obteve resultados idênticos aos das melhores soluções conhecidas em 92 instâncias e um desvio percentual médio de 0,50%. Verificou-se que os métodos demonstraram efetividade na solução do problema, sendo comparáveis a outros métodos apresentados na literatura.
id UFSP_365ae6c8efe922952ca3ec31fb0c7847
oai_identifier_str oai:repositorio.unifesp.br:11600/68965
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str
spelling Algoritmos híbridos para a solução do "Team Orienteering Problem"Hybrid algorithms for solving the Team Orienteering ProblemHybrid AlgorithmsIterated Local SearchBiased Random-Key Genetic AlgorithmFix-and-OptimizeMixed Integer ProgrammingMetaheuristicsNeste trabalho, o Team Orienteering Problem (TOP) é resolvido utilizando dois métodos híbridos resultantes da integração da metaheurística Iterated Local Search (ILS) com a matheuristic Fix-and-Optimize (F&O) e da metaheurística Biased Random-Key Genetic Algorithm (BRKGA) com o F&O. O Team Orienteering Problem é um problema de otimização combinatória NP-difícil pertencente à classe de problemas de roteamento com prêmios. Seu objetivo é maximizar um prêmio total coletado por uma frota de veículos, determinando quais localidades são visitadas por cada veículo e em que sequência, restrito ao tempo máximo de duração de cada rota. A implementação do ILS contou com heurísticas de busca local contendo métricas específicas para a inclusão ou substituição de localidades. De modo semelhante, um decoder específico para o TOP foi proposto na implementação do BRKGA. Quanto ao F&O, foi utilizada, para a solução dos subproblemas, uma definição de subconjuntos de variáveis baseada em nós adjacentes, priorizando a inclusão dos nós e variáveis associadas em cada subconjunto baseada na distância dos nós não visitados aos nós pertencentes às rotas. Todas as implementações foram realizadas em linguagem de programação Julia e o Gurobi foi utilizado como pacote de otimização para a solução dos problemas de programação inteira mista no âmbito do F&O. Para analisar a efetividade dos métodos propostos, foram realizados experimentos computacionais com 3 conjuntos de instâncias de maior porte constantes da literatura, contendo ao todo 179 instâncias com número de localidades variando de 100 a 400 e os algoritmos foram executados 20 vezes para cada uma das instâncias. O ILS + F&O obteve resultados idênticos aos das melhores soluções conhecidas em 94 instâncias e um desvio percentual médio de 0,53% com melhor desempenho nas instâncias de menor porte. Já o BRKGA + F&O alcançou um melhor desempenho nas instâncias de grande porte e obteve resultados idênticos aos das melhores soluções conhecidas em 92 instâncias e um desvio percentual médio de 0,50%. Verificou-se que os métodos demonstraram efetividade na solução do problema, sendo comparáveis a outros métodos apresentados na literatura.This work addresses the resolution of the Team Orienteering Problem (TOP) through the utilization of two hybrid methods. These hybrid methods are derived from the integration of the Iterated Local Search (ILS) metaheuristic with the Fix-And-Optimize (F&O) matheuristic, as well as the Biased Random-Key Genetic Algorithm (BRKGA) with the F\&O. The Team Orienteering Problem is a challenging combinatorial optimization problem classified as an NP-hard. The main objective of TOP is to maximize the total prize collected by a fleet of vehicles by determining the optimal sequence and selection of locations to visit for each vehicle, while adhering to the maximum route duration constraint. The ILS implementation incorporated local search heuristics that employed specific metrics to decide on the inclusion or replacement of locations. Likewise, a dedicated decoder for TOP was proposed in the BRKGA implementation. As for F&O, a definition of variable subsets based on adjacent nodes was used for solving subproblems, prioritizing the inclusion of nodes and associated variables in each subset based on the distance from unvisited nodes to nodes belonging to the routes. All implementations were carried out in the Julia language, with Gurobi serving as the solver for solving mixed integer programming problems within the scope of F&O. To evaluate the effectiveness of the proposed methods, computational experiments were conducted using three sets of instances from the existing literature. These sets consist of a total of 179 instances, with the number of locations ranging from 100 to 400. Each algorithm was executed 20 times for each instance. The ILS + F&O achieved identical results to the best known solutions in 94 instances, with an average percentage deviation of 0.53%, performing better in smaller instances. On the other hand, the BRKGA + F&O achieved better performance in larger instances and obtained identical results to the best known solutions in 92 instances, with an average percentage deviation of 0.50%. The results demonstrated that both methods effectively solve the problem and exhibit performance comparable to other methods documented in the literature.OutraUniversidade Federal de São PauloSenne, Edson Luiz França [UNIFESP]http://lattes.cnpq.br/1338008237590056https://lattes.cnpq.br/6111444839287695Macêdo, Eduardo Állysson Alves Gonçalves [UNIFESP]2023-08-04T11:55:22Z2023-08-04T11:55:22Z2023-06-28info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion76 f.application/pdfMACEDO, E. A. A. G. Algoritmos híbridos para a solução do “Team Orienteering Problem”. 2023. 76f. Dissertação de Mestrado – Instituto Tecnológico de Aeronáutica e Universidade Federal de São Paulo, São José dos Campos.https://repositorio.unifesp.br/handle/11600/68965ark:/48912/0013000025rxwporSão José dos Campos - SPinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-13T03:51:17Zoai:repositorio.unifesp.br:11600/68965Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-13T03:51:17Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv Algoritmos híbridos para a solução do "Team Orienteering Problem"
Hybrid algorithms for solving the Team Orienteering Problem
title Algoritmos híbridos para a solução do "Team Orienteering Problem"
spellingShingle Algoritmos híbridos para a solução do "Team Orienteering Problem"
Macêdo, Eduardo Állysson Alves Gonçalves [UNIFESP]
Hybrid Algorithms
Iterated Local Search
Biased Random-Key Genetic Algorithm
Fix-and-Optimize
Mixed Integer Programming
Metaheuristics
title_short Algoritmos híbridos para a solução do "Team Orienteering Problem"
title_full Algoritmos híbridos para a solução do "Team Orienteering Problem"
title_fullStr Algoritmos híbridos para a solução do "Team Orienteering Problem"
title_full_unstemmed Algoritmos híbridos para a solução do "Team Orienteering Problem"
title_sort Algoritmos híbridos para a solução do "Team Orienteering Problem"
author Macêdo, Eduardo Állysson Alves Gonçalves [UNIFESP]
author_facet Macêdo, Eduardo Állysson Alves Gonçalves [UNIFESP]
author_role author
dc.contributor.none.fl_str_mv Senne, Edson Luiz França [UNIFESP]
http://lattes.cnpq.br/1338008237590056
https://lattes.cnpq.br/6111444839287695
dc.contributor.author.fl_str_mv Macêdo, Eduardo Állysson Alves Gonçalves [UNIFESP]
dc.subject.por.fl_str_mv Hybrid Algorithms
Iterated Local Search
Biased Random-Key Genetic Algorithm
Fix-and-Optimize
Mixed Integer Programming
Metaheuristics
topic Hybrid Algorithms
Iterated Local Search
Biased Random-Key Genetic Algorithm
Fix-and-Optimize
Mixed Integer Programming
Metaheuristics
description Neste trabalho, o Team Orienteering Problem (TOP) é resolvido utilizando dois métodos híbridos resultantes da integração da metaheurística Iterated Local Search (ILS) com a matheuristic Fix-and-Optimize (F&O) e da metaheurística Biased Random-Key Genetic Algorithm (BRKGA) com o F&O. O Team Orienteering Problem é um problema de otimização combinatória NP-difícil pertencente à classe de problemas de roteamento com prêmios. Seu objetivo é maximizar um prêmio total coletado por uma frota de veículos, determinando quais localidades são visitadas por cada veículo e em que sequência, restrito ao tempo máximo de duração de cada rota. A implementação do ILS contou com heurísticas de busca local contendo métricas específicas para a inclusão ou substituição de localidades. De modo semelhante, um decoder específico para o TOP foi proposto na implementação do BRKGA. Quanto ao F&O, foi utilizada, para a solução dos subproblemas, uma definição de subconjuntos de variáveis baseada em nós adjacentes, priorizando a inclusão dos nós e variáveis associadas em cada subconjunto baseada na distância dos nós não visitados aos nós pertencentes às rotas. Todas as implementações foram realizadas em linguagem de programação Julia e o Gurobi foi utilizado como pacote de otimização para a solução dos problemas de programação inteira mista no âmbito do F&O. Para analisar a efetividade dos métodos propostos, foram realizados experimentos computacionais com 3 conjuntos de instâncias de maior porte constantes da literatura, contendo ao todo 179 instâncias com número de localidades variando de 100 a 400 e os algoritmos foram executados 20 vezes para cada uma das instâncias. O ILS + F&O obteve resultados idênticos aos das melhores soluções conhecidas em 94 instâncias e um desvio percentual médio de 0,53% com melhor desempenho nas instâncias de menor porte. Já o BRKGA + F&O alcançou um melhor desempenho nas instâncias de grande porte e obteve resultados idênticos aos das melhores soluções conhecidas em 92 instâncias e um desvio percentual médio de 0,50%. Verificou-se que os métodos demonstraram efetividade na solução do problema, sendo comparáveis a outros métodos apresentados na literatura.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-04T11:55:22Z
2023-08-04T11:55:22Z
2023-06-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MACEDO, E. A. A. G. Algoritmos híbridos para a solução do “Team Orienteering Problem”. 2023. 76f. Dissertação de Mestrado – Instituto Tecnológico de Aeronáutica e Universidade Federal de São Paulo, São José dos Campos.
https://repositorio.unifesp.br/handle/11600/68965
dc.identifier.dark.fl_str_mv ark:/48912/0013000025rxw
identifier_str_mv MACEDO, E. A. A. G. Algoritmos híbridos para a solução do “Team Orienteering Problem”. 2023. 76f. Dissertação de Mestrado – Instituto Tecnológico de Aeronáutica e Universidade Federal de São Paulo, São José dos Campos.
ark:/48912/0013000025rxw
url https://repositorio.unifesp.br/handle/11600/68965
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 76 f.
application/pdf
dc.coverage.none.fl_str_mv São José dos Campos - SP
dc.publisher.none.fl_str_mv Universidade Federal de São Paulo
publisher.none.fl_str_mv Universidade Federal de São Paulo
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1848497979112030208