NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Jeske, Marlon [UNIFESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/48912/001300001m80k
Idioma: por
Instituição de defesa: Universidade Federal de São Paulo (UNIFESP)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7697560
https://repositorio.unifesp.br/handle/11600/59853
Resumo: In the last years it has been observed an increase in the use of applications and new technologies for wireless sensor networks (WSNs), which have the function of performing monitoring tasks in different environments. In this way, WSNs allow information from the physical environment to be connected to the internet, making them an essential part of the Internet of Things (IoT) concept. A WSN is composed basically of low-cost micro- devices with limited energy (namely sensors), able to collect, transmit and receive data. It is of fundamental importance to find ways and solutions that correspond to the intrin- sic needs related to the technological limitations of the network components, such as the maximization of the network energy efficiency (lifetime), minimization of the packet loss rate, maximization of connectivity coverage, among others characteristics called metrics of QoS (Quality of Service). This Master Thesis addresses a bi-objective routing problem in WSN recently proposed in the literature, which has as optimization criteria two con- flicting metrics of QoS, the most emphasized in the literature: residual energy efficiency and packet delivery reliability. The heuristic approach employed in the literature was not able to obtain results for large-scale environments. In addition, for small and large-scale environments, the literature heuristics provided slightly dense Pareto curves, making it difficult to evaluate the results. In this way, to solve the problem in this Thesis was deve- loped the multiobjective evolutionary algorithm Elitist Non-dominated Sorting Algorithm (NSGA-II). Simulation results show that the solution of the problem using NSGA-II has better efficiency in terms of solution quality and computational time when compared to literature heuristics and exact approaches. Besides that, due to the good performance obtained in small-scale environments through the evolutionary approach, it was possible to solve the bi-objective problem in large-scale environments with solutions in a viable computational time.
id UFSP_93135da9d174df789f25eb139cf8e913
oai_identifier_str oai:repositorio.unifesp.br:11600/59853
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str
spelling NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fioWireless Sensor NetworksEvolutionary AlgorithmMultiobjective OptimizationRedes De Sensores Sem FioAlgoritmo EvolutivoOtimização MultiobjetivoIn the last years it has been observed an increase in the use of applications and new technologies for wireless sensor networks (WSNs), which have the function of performing monitoring tasks in different environments. In this way, WSNs allow information from the physical environment to be connected to the internet, making them an essential part of the Internet of Things (IoT) concept. A WSN is composed basically of low-cost micro- devices with limited energy (namely sensors), able to collect, transmit and receive data. It is of fundamental importance to find ways and solutions that correspond to the intrin- sic needs related to the technological limitations of the network components, such as the maximization of the network energy efficiency (lifetime), minimization of the packet loss rate, maximization of connectivity coverage, among others characteristics called metrics of QoS (Quality of Service). This Master Thesis addresses a bi-objective routing problem in WSN recently proposed in the literature, which has as optimization criteria two con- flicting metrics of QoS, the most emphasized in the literature: residual energy efficiency and packet delivery reliability. The heuristic approach employed in the literature was not able to obtain results for large-scale environments. In addition, for small and large-scale environments, the literature heuristics provided slightly dense Pareto curves, making it difficult to evaluate the results. In this way, to solve the problem in this Thesis was deve- loped the multiobjective evolutionary algorithm Elitist Non-dominated Sorting Algorithm (NSGA-II). Simulation results show that the solution of the problem using NSGA-II has better efficiency in terms of solution quality and computational time when compared to literature heuristics and exact approaches. Besides that, due to the good performance obtained in small-scale environments through the evolutionary approach, it was possible to solve the bi-objective problem in large-scale environments with solutions in a viable computational time.Nos últimos anos, houve um aumento do uso de aplicações e novas tecnologias de redes de sensores sem fio (RSSFs), as quais têm a função de realizar tarefas de monitoramento de eventos em diferentes ambientes. Desta forma, as RSSFs permitem que informações do meio físico sejam conectadas à Internet, tornando-as parte essencial do conceito de Internet das Coisas (IoT). Uma RSSF é composta basicamente por microdispositivos de baixo custo e reserva energética limitada (denominados sensores), aptos a realizar coleta, transmissões e recepções de dados. É de fundamental importância encontrar vias e soluções que correspondam às necessidades intrínsecas relacionadas às limitações tecnológicas dos componentes da rede, bem como a maximização da eficiência energética da rede, a minimização do percentual de perda de informações, a maximização da cobertura da rede, entre outras características, denominadas métricas de qualidade. Esta Dissertação de Mestrado aborda um problema bi-objetivo de roteamento em RSSFs recentemente proposto na literatura, que tem como critérios de otimização duas métricas de qualidade conflitantes, das mais enfatizadas na literatura: eficiência energética residual e a confiabilidade da entrega de dados. A abordagem heurística empregada na literatura não foi capaz de obter resultados para ambientes em larga escala. Além disso, para ambientes de pequena e larga escala, a heurística da literatura forneceu curvas de Pareto pouco densas, dificultando a avaliação dos resultados. Nesse sentido, para resolver o problema, nesta Dissertação foi adaptado o algoritmo evolutivo multiobjetivo Elitist Non-dominated Sorting Algorithm (NSGA-II). Os resultados das simulações mostram que a resolução do problema por meio do NSGA-II tem melhor eficácia em termos de qualidade de soluções e tempo computacional quando comparado às abordagens exata e heurística da literatura. Além disso, diante do bom desempenho obtido em ambientes de pequena escala por meio da abordagem evolutiva, foi possível a resolução do problema bi-objetivo em ambientes de larga escala com soluções em um tempo computacional viável.Dados abertos - Sucupira - Teses e dissertações (2019)Universidade Federal de São Paulo (UNIFESP)Rosset, Maria Cristina Vasconcelos Nascimento [UNIFESP]Universidade Federal de São Paulo (UNIFESP)Jeske, Marlon [UNIFESP]2021-01-19T16:36:39Z2021-01-19T16:36:39Z2019-01-28info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7697560MARLON JESKE.pdfhttps://repositorio.unifesp.br/handle/11600/59853ark:/48912/001300001m80kporinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-07-27T09:47:59Zoai:repositorio.unifesp.br:11600/59853Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-07-27T09:47:59Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio
title NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio
spellingShingle NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio
Jeske, Marlon [UNIFESP]
Wireless Sensor Networks
Evolutionary Algorithm
Multiobjective Optimization
Redes De Sensores Sem Fio
Algoritmo Evolutivo
Otimização Multiobjetivo
title_short NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio
title_full NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio
title_fullStr NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio
title_full_unstemmed NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio
title_sort NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio
author Jeske, Marlon [UNIFESP]
author_facet Jeske, Marlon [UNIFESP]
author_role author
dc.contributor.none.fl_str_mv Rosset, Maria Cristina Vasconcelos Nascimento [UNIFESP]
Universidade Federal de São Paulo (UNIFESP)
dc.contributor.author.fl_str_mv Jeske, Marlon [UNIFESP]
dc.subject.por.fl_str_mv Wireless Sensor Networks
Evolutionary Algorithm
Multiobjective Optimization
Redes De Sensores Sem Fio
Algoritmo Evolutivo
Otimização Multiobjetivo
topic Wireless Sensor Networks
Evolutionary Algorithm
Multiobjective Optimization
Redes De Sensores Sem Fio
Algoritmo Evolutivo
Otimização Multiobjetivo
description In the last years it has been observed an increase in the use of applications and new technologies for wireless sensor networks (WSNs), which have the function of performing monitoring tasks in different environments. In this way, WSNs allow information from the physical environment to be connected to the internet, making them an essential part of the Internet of Things (IoT) concept. A WSN is composed basically of low-cost micro- devices with limited energy (namely sensors), able to collect, transmit and receive data. It is of fundamental importance to find ways and solutions that correspond to the intrin- sic needs related to the technological limitations of the network components, such as the maximization of the network energy efficiency (lifetime), minimization of the packet loss rate, maximization of connectivity coverage, among others characteristics called metrics of QoS (Quality of Service). This Master Thesis addresses a bi-objective routing problem in WSN recently proposed in the literature, which has as optimization criteria two con- flicting metrics of QoS, the most emphasized in the literature: residual energy efficiency and packet delivery reliability. The heuristic approach employed in the literature was not able to obtain results for large-scale environments. In addition, for small and large-scale environments, the literature heuristics provided slightly dense Pareto curves, making it difficult to evaluate the results. In this way, to solve the problem in this Thesis was deve- loped the multiobjective evolutionary algorithm Elitist Non-dominated Sorting Algorithm (NSGA-II). Simulation results show that the solution of the problem using NSGA-II has better efficiency in terms of solution quality and computational time when compared to literature heuristics and exact approaches. Besides that, due to the good performance obtained in small-scale environments through the evolutionary approach, it was possible to solve the bi-objective problem in large-scale environments with solutions in a viable computational time.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-28
2021-01-19T16:36:39Z
2021-01-19T16:36:39Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7697560
MARLON JESKE.pdf
https://repositorio.unifesp.br/handle/11600/59853
dc.identifier.dark.fl_str_mv ark:/48912/001300001m80k
url https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7697560
https://repositorio.unifesp.br/handle/11600/59853
identifier_str_mv MARLON JESKE.pdf
ark:/48912/001300001m80k
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
publisher.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1848497904347512832