NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/48912/001300001m80k |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Paulo (UNIFESP)
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7697560 https://repositorio.unifesp.br/handle/11600/59853 |
Resumo: | In the last years it has been observed an increase in the use of applications and new technologies for wireless sensor networks (WSNs), which have the function of performing monitoring tasks in different environments. In this way, WSNs allow information from the physical environment to be connected to the internet, making them an essential part of the Internet of Things (IoT) concept. A WSN is composed basically of low-cost micro- devices with limited energy (namely sensors), able to collect, transmit and receive data. It is of fundamental importance to find ways and solutions that correspond to the intrin- sic needs related to the technological limitations of the network components, such as the maximization of the network energy efficiency (lifetime), minimization of the packet loss rate, maximization of connectivity coverage, among others characteristics called metrics of QoS (Quality of Service). This Master Thesis addresses a bi-objective routing problem in WSN recently proposed in the literature, which has as optimization criteria two con- flicting metrics of QoS, the most emphasized in the literature: residual energy efficiency and packet delivery reliability. The heuristic approach employed in the literature was not able to obtain results for large-scale environments. In addition, for small and large-scale environments, the literature heuristics provided slightly dense Pareto curves, making it difficult to evaluate the results. In this way, to solve the problem in this Thesis was deve- loped the multiobjective evolutionary algorithm Elitist Non-dominated Sorting Algorithm (NSGA-II). Simulation results show that the solution of the problem using NSGA-II has better efficiency in terms of solution quality and computational time when compared to literature heuristics and exact approaches. Besides that, due to the good performance obtained in small-scale environments through the evolutionary approach, it was possible to solve the bi-objective problem in large-scale environments with solutions in a viable computational time. |
| id |
UFSP_93135da9d174df789f25eb139cf8e913 |
|---|---|
| oai_identifier_str |
oai:repositorio.unifesp.br:11600/59853 |
| network_acronym_str |
UFSP |
| network_name_str |
Repositório Institucional da UNIFESP |
| repository_id_str |
|
| spelling |
NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fioWireless Sensor NetworksEvolutionary AlgorithmMultiobjective OptimizationRedes De Sensores Sem FioAlgoritmo EvolutivoOtimização MultiobjetivoIn the last years it has been observed an increase in the use of applications and new technologies for wireless sensor networks (WSNs), which have the function of performing monitoring tasks in different environments. In this way, WSNs allow information from the physical environment to be connected to the internet, making them an essential part of the Internet of Things (IoT) concept. A WSN is composed basically of low-cost micro- devices with limited energy (namely sensors), able to collect, transmit and receive data. It is of fundamental importance to find ways and solutions that correspond to the intrin- sic needs related to the technological limitations of the network components, such as the maximization of the network energy efficiency (lifetime), minimization of the packet loss rate, maximization of connectivity coverage, among others characteristics called metrics of QoS (Quality of Service). This Master Thesis addresses a bi-objective routing problem in WSN recently proposed in the literature, which has as optimization criteria two con- flicting metrics of QoS, the most emphasized in the literature: residual energy efficiency and packet delivery reliability. The heuristic approach employed in the literature was not able to obtain results for large-scale environments. In addition, for small and large-scale environments, the literature heuristics provided slightly dense Pareto curves, making it difficult to evaluate the results. In this way, to solve the problem in this Thesis was deve- loped the multiobjective evolutionary algorithm Elitist Non-dominated Sorting Algorithm (NSGA-II). Simulation results show that the solution of the problem using NSGA-II has better efficiency in terms of solution quality and computational time when compared to literature heuristics and exact approaches. Besides that, due to the good performance obtained in small-scale environments through the evolutionary approach, it was possible to solve the bi-objective problem in large-scale environments with solutions in a viable computational time.Nos últimos anos, houve um aumento do uso de aplicações e novas tecnologias de redes de sensores sem fio (RSSFs), as quais têm a função de realizar tarefas de monitoramento de eventos em diferentes ambientes. Desta forma, as RSSFs permitem que informações do meio físico sejam conectadas à Internet, tornando-as parte essencial do conceito de Internet das Coisas (IoT). Uma RSSF é composta basicamente por microdispositivos de baixo custo e reserva energética limitada (denominados sensores), aptos a realizar coleta, transmissões e recepções de dados. É de fundamental importância encontrar vias e soluções que correspondam às necessidades intrínsecas relacionadas às limitações tecnológicas dos componentes da rede, bem como a maximização da eficiência energética da rede, a minimização do percentual de perda de informações, a maximização da cobertura da rede, entre outras características, denominadas métricas de qualidade. Esta Dissertação de Mestrado aborda um problema bi-objetivo de roteamento em RSSFs recentemente proposto na literatura, que tem como critérios de otimização duas métricas de qualidade conflitantes, das mais enfatizadas na literatura: eficiência energética residual e a confiabilidade da entrega de dados. A abordagem heurística empregada na literatura não foi capaz de obter resultados para ambientes em larga escala. Além disso, para ambientes de pequena e larga escala, a heurística da literatura forneceu curvas de Pareto pouco densas, dificultando a avaliação dos resultados. Nesse sentido, para resolver o problema, nesta Dissertação foi adaptado o algoritmo evolutivo multiobjetivo Elitist Non-dominated Sorting Algorithm (NSGA-II). Os resultados das simulações mostram que a resolução do problema por meio do NSGA-II tem melhor eficácia em termos de qualidade de soluções e tempo computacional quando comparado às abordagens exata e heurística da literatura. Além disso, diante do bom desempenho obtido em ambientes de pequena escala por meio da abordagem evolutiva, foi possível a resolução do problema bi-objetivo em ambientes de larga escala com soluções em um tempo computacional viável.Dados abertos - Sucupira - Teses e dissertações (2019)Universidade Federal de São Paulo (UNIFESP)Rosset, Maria Cristina Vasconcelos Nascimento [UNIFESP]Universidade Federal de São Paulo (UNIFESP)Jeske, Marlon [UNIFESP]2021-01-19T16:36:39Z2021-01-19T16:36:39Z2019-01-28info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7697560MARLON JESKE.pdfhttps://repositorio.unifesp.br/handle/11600/59853ark:/48912/001300001m80kporinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-07-27T09:47:59Zoai:repositorio.unifesp.br:11600/59853Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-07-27T09:47:59Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
| dc.title.none.fl_str_mv |
NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio |
| title |
NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio |
| spellingShingle |
NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio Jeske, Marlon [UNIFESP] Wireless Sensor Networks Evolutionary Algorithm Multiobjective Optimization Redes De Sensores Sem Fio Algoritmo Evolutivo Otimização Multiobjetivo |
| title_short |
NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio |
| title_full |
NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio |
| title_fullStr |
NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio |
| title_full_unstemmed |
NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio |
| title_sort |
NSGA-II para a solução eficiente de problemas de roteamento multiobjetivo em redes de sensores sem fio |
| author |
Jeske, Marlon [UNIFESP] |
| author_facet |
Jeske, Marlon [UNIFESP] |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Rosset, Maria Cristina Vasconcelos Nascimento [UNIFESP] Universidade Federal de São Paulo (UNIFESP) |
| dc.contributor.author.fl_str_mv |
Jeske, Marlon [UNIFESP] |
| dc.subject.por.fl_str_mv |
Wireless Sensor Networks Evolutionary Algorithm Multiobjective Optimization Redes De Sensores Sem Fio Algoritmo Evolutivo Otimização Multiobjetivo |
| topic |
Wireless Sensor Networks Evolutionary Algorithm Multiobjective Optimization Redes De Sensores Sem Fio Algoritmo Evolutivo Otimização Multiobjetivo |
| description |
In the last years it has been observed an increase in the use of applications and new technologies for wireless sensor networks (WSNs), which have the function of performing monitoring tasks in different environments. In this way, WSNs allow information from the physical environment to be connected to the internet, making them an essential part of the Internet of Things (IoT) concept. A WSN is composed basically of low-cost micro- devices with limited energy (namely sensors), able to collect, transmit and receive data. It is of fundamental importance to find ways and solutions that correspond to the intrin- sic needs related to the technological limitations of the network components, such as the maximization of the network energy efficiency (lifetime), minimization of the packet loss rate, maximization of connectivity coverage, among others characteristics called metrics of QoS (Quality of Service). This Master Thesis addresses a bi-objective routing problem in WSN recently proposed in the literature, which has as optimization criteria two con- flicting metrics of QoS, the most emphasized in the literature: residual energy efficiency and packet delivery reliability. The heuristic approach employed in the literature was not able to obtain results for large-scale environments. In addition, for small and large-scale environments, the literature heuristics provided slightly dense Pareto curves, making it difficult to evaluate the results. In this way, to solve the problem in this Thesis was deve- loped the multiobjective evolutionary algorithm Elitist Non-dominated Sorting Algorithm (NSGA-II). Simulation results show that the solution of the problem using NSGA-II has better efficiency in terms of solution quality and computational time when compared to literature heuristics and exact approaches. Besides that, due to the good performance obtained in small-scale environments through the evolutionary approach, it was possible to solve the bi-objective problem in large-scale environments with solutions in a viable computational time. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-01-28 2021-01-19T16:36:39Z 2021-01-19T16:36:39Z |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7697560 MARLON JESKE.pdf https://repositorio.unifesp.br/handle/11600/59853 |
| dc.identifier.dark.fl_str_mv |
ark:/48912/001300001m80k |
| url |
https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7697560 https://repositorio.unifesp.br/handle/11600/59853 |
| identifier_str_mv |
MARLON JESKE.pdf ark:/48912/001300001m80k |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Paulo (UNIFESP) |
| publisher.none.fl_str_mv |
Universidade Federal de São Paulo (UNIFESP) |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
| instname_str |
Universidade Federal de São Paulo (UNIFESP) |
| instacron_str |
UNIFESP |
| institution |
UNIFESP |
| reponame_str |
Repositório Institucional da UNIFESP |
| collection |
Repositório Institucional da UNIFESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
| repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
| _version_ |
1848497904347512832 |