e-NEAT: Um Arcabouço de Combinação de Classificadores baseados em Neuroevolução

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Pimenta, Guilherme Bruno Araújo [UNIFESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/48912/001300002txqk
Idioma: por
Instituição de defesa: Universidade Federal de São Paulo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.unifesp.br/handle/11600/67473
Resumo: Técnicas de aprendizado de máquina são aplicadas em diversas áreas do conhecimento, de modo a criar modelos que sejam capazes de auxiliar ou substituir tarefas realizadas por pessoas. Considerando modelos de aprendizado de máquina mais tradicionais, nota-se certa dependência desses com a presença de um especialista, que possua conhecimento tanto do domínio do problema quanto das ferramentas, de modo a gerar e parametrizar o modelo corretamente. Visto isso, novas técnicas e algoritmos ganham destaque na tarefa tornar tal processo mais automatizado e com menos dependência de um especialista. Esses fazem parte de um paradigma conhecido por Automated Machine Learning. Uma das abordagens pertencente a essa família de algoritmos consiste no uso de operadores genéticos para a concepção de redes neurais artificiais, tal técnica é conhecida por neuroevolução, sendo essa capaz de atuar na evolução dos elementos topológicos da rede, possibilitando assim, que ela se adapte a cenários de diferentes complexidades. Dentro do paradigma de aprendizado de máquina, existe uma linha de pensamento que defende que na resolução de um problema, um conjunto de preditores (comitê), quando combinados por algum critério de agregação, tende a obter melhores resultados se comparado a um único preditor. Porém, para que isso seja possível, se acredita ser necessário um comitê que contenha integrantes diversos, ou seja, que mapeiem o problema de forma distinta e eficiente, bem como, tenham seus votos agregados adequadamente para que o resultado final seja satisfatório. Nesse contexto, a aplicação de algoritmos de neuroevolução se apresenta como um candidato para a geração dos integrantes do comitê, já que esses são capazes de conceber redes com estrutura interna distinta durante o processo evolutivo, o que pode resultar em diversidade de respostas a serem combinadas por estratégias de agregação. Portanto, esse trabalho explora o uso de neuroevolução para a criação de comitê de Redes Neurais Artificiais, assim como, empregando diferentes estratégias de agregação de votos, a fim de formar comitês com redes diversas. Apresentou-se 5 diferentes classificadores resultantes do arcabouço proposto, sendo evidenciados resultados superiores em 5 das 10 bases de dados quando comparado a outros 7 métodos de aprendizado de máquina consolidados na literatura, demonstrando ganhos de até 12,5% frente ao melhor método de base de comparação, confirmando dentro do escopo dos experimentos as hipóteses do trabalho.
id UFSP_ec8e976845ba581e5cfa059ff8d569f9
oai_identifier_str oai:repositorio.unifesp.br:11600/67473
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str
spelling e-NEAT: Um Arcabouço de Combinação de Classificadores baseados em Neuroevoluçãoaprendizagem de máquinacomitê de classificadoresautoMLneuroevoluçãoNEATTécnicas de aprendizado de máquina são aplicadas em diversas áreas do conhecimento, de modo a criar modelos que sejam capazes de auxiliar ou substituir tarefas realizadas por pessoas. Considerando modelos de aprendizado de máquina mais tradicionais, nota-se certa dependência desses com a presença de um especialista, que possua conhecimento tanto do domínio do problema quanto das ferramentas, de modo a gerar e parametrizar o modelo corretamente. Visto isso, novas técnicas e algoritmos ganham destaque na tarefa tornar tal processo mais automatizado e com menos dependência de um especialista. Esses fazem parte de um paradigma conhecido por Automated Machine Learning. Uma das abordagens pertencente a essa família de algoritmos consiste no uso de operadores genéticos para a concepção de redes neurais artificiais, tal técnica é conhecida por neuroevolução, sendo essa capaz de atuar na evolução dos elementos topológicos da rede, possibilitando assim, que ela se adapte a cenários de diferentes complexidades. Dentro do paradigma de aprendizado de máquina, existe uma linha de pensamento que defende que na resolução de um problema, um conjunto de preditores (comitê), quando combinados por algum critério de agregação, tende a obter melhores resultados se comparado a um único preditor. Porém, para que isso seja possível, se acredita ser necessário um comitê que contenha integrantes diversos, ou seja, que mapeiem o problema de forma distinta e eficiente, bem como, tenham seus votos agregados adequadamente para que o resultado final seja satisfatório. Nesse contexto, a aplicação de algoritmos de neuroevolução se apresenta como um candidato para a geração dos integrantes do comitê, já que esses são capazes de conceber redes com estrutura interna distinta durante o processo evolutivo, o que pode resultar em diversidade de respostas a serem combinadas por estratégias de agregação. Portanto, esse trabalho explora o uso de neuroevolução para a criação de comitê de Redes Neurais Artificiais, assim como, empregando diferentes estratégias de agregação de votos, a fim de formar comitês com redes diversas. Apresentou-se 5 diferentes classificadores resultantes do arcabouço proposto, sendo evidenciados resultados superiores em 5 das 10 bases de dados quando comparado a outros 7 métodos de aprendizado de máquina consolidados na literatura, demonstrando ganhos de até 12,5% frente ao melhor método de base de comparação, confirmando dentro do escopo dos experimentos as hipóteses do trabalho.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)001Universidade Federal de São PauloFaria, Fabio Augusto [UNIFESP]http://lattes.cnpq.br/3828728429230356http://lattes.cnpq.br/2284592753469868Pimenta, Guilherme Bruno Araújo [UNIFESP]2023-05-10T11:26:28Z2023-05-10T11:26:28Z2023-02-28info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion130 f.application/pdfhttps://repositorio.unifesp.br/handle/11600/67473ark:/48912/001300002txqkporinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-12T16:29:56Zoai:repositorio.unifesp.br:11600/67473Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-12T16:29:56Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv e-NEAT: Um Arcabouço de Combinação de Classificadores baseados em Neuroevolução
title e-NEAT: Um Arcabouço de Combinação de Classificadores baseados em Neuroevolução
spellingShingle e-NEAT: Um Arcabouço de Combinação de Classificadores baseados em Neuroevolução
Pimenta, Guilherme Bruno Araújo [UNIFESP]
aprendizagem de máquina
comitê de classificadores
autoML
neuroevolução
NEAT
title_short e-NEAT: Um Arcabouço de Combinação de Classificadores baseados em Neuroevolução
title_full e-NEAT: Um Arcabouço de Combinação de Classificadores baseados em Neuroevolução
title_fullStr e-NEAT: Um Arcabouço de Combinação de Classificadores baseados em Neuroevolução
title_full_unstemmed e-NEAT: Um Arcabouço de Combinação de Classificadores baseados em Neuroevolução
title_sort e-NEAT: Um Arcabouço de Combinação de Classificadores baseados em Neuroevolução
author Pimenta, Guilherme Bruno Araújo [UNIFESP]
author_facet Pimenta, Guilherme Bruno Araújo [UNIFESP]
author_role author
dc.contributor.none.fl_str_mv Faria, Fabio Augusto [UNIFESP]
http://lattes.cnpq.br/3828728429230356
http://lattes.cnpq.br/2284592753469868
dc.contributor.author.fl_str_mv Pimenta, Guilherme Bruno Araújo [UNIFESP]
dc.subject.por.fl_str_mv aprendizagem de máquina
comitê de classificadores
autoML
neuroevolução
NEAT
topic aprendizagem de máquina
comitê de classificadores
autoML
neuroevolução
NEAT
description Técnicas de aprendizado de máquina são aplicadas em diversas áreas do conhecimento, de modo a criar modelos que sejam capazes de auxiliar ou substituir tarefas realizadas por pessoas. Considerando modelos de aprendizado de máquina mais tradicionais, nota-se certa dependência desses com a presença de um especialista, que possua conhecimento tanto do domínio do problema quanto das ferramentas, de modo a gerar e parametrizar o modelo corretamente. Visto isso, novas técnicas e algoritmos ganham destaque na tarefa tornar tal processo mais automatizado e com menos dependência de um especialista. Esses fazem parte de um paradigma conhecido por Automated Machine Learning. Uma das abordagens pertencente a essa família de algoritmos consiste no uso de operadores genéticos para a concepção de redes neurais artificiais, tal técnica é conhecida por neuroevolução, sendo essa capaz de atuar na evolução dos elementos topológicos da rede, possibilitando assim, que ela se adapte a cenários de diferentes complexidades. Dentro do paradigma de aprendizado de máquina, existe uma linha de pensamento que defende que na resolução de um problema, um conjunto de preditores (comitê), quando combinados por algum critério de agregação, tende a obter melhores resultados se comparado a um único preditor. Porém, para que isso seja possível, se acredita ser necessário um comitê que contenha integrantes diversos, ou seja, que mapeiem o problema de forma distinta e eficiente, bem como, tenham seus votos agregados adequadamente para que o resultado final seja satisfatório. Nesse contexto, a aplicação de algoritmos de neuroevolução se apresenta como um candidato para a geração dos integrantes do comitê, já que esses são capazes de conceber redes com estrutura interna distinta durante o processo evolutivo, o que pode resultar em diversidade de respostas a serem combinadas por estratégias de agregação. Portanto, esse trabalho explora o uso de neuroevolução para a criação de comitê de Redes Neurais Artificiais, assim como, empregando diferentes estratégias de agregação de votos, a fim de formar comitês com redes diversas. Apresentou-se 5 diferentes classificadores resultantes do arcabouço proposto, sendo evidenciados resultados superiores em 5 das 10 bases de dados quando comparado a outros 7 métodos de aprendizado de máquina consolidados na literatura, demonstrando ganhos de até 12,5% frente ao melhor método de base de comparação, confirmando dentro do escopo dos experimentos as hipóteses do trabalho.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-10T11:26:28Z
2023-05-10T11:26:28Z
2023-02-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.unifesp.br/handle/11600/67473
dc.identifier.dark.fl_str_mv ark:/48912/001300002txqk
url https://repositorio.unifesp.br/handle/11600/67473
identifier_str_mv ark:/48912/001300002txqk
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 130 f.
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Paulo
publisher.none.fl_str_mv Universidade Federal de São Paulo
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1848498054574899200