Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: LIMA, Fernando Max lattes
Orientador(a): BERTONCELLO, Dernival lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Triângulo Mineiro
Programa de Pós-Graduação: Programa de Pós-Graduação em Educação Física
Departamento: Instituto de Ciências da Saúde - ICS::Curso de Graduação em Educação Física
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://bdtd.uftm.edu.br/handle/tede/210
Resumo: Muscle fatigue is a limiting factor for both healthy and sick people and exercise can be beneficial. Ten RM tests give indicia of muscle strength and endurance and combining other analysis tools can provide valuable information. Therefore, the aim of this study was to analyze the effects of muscle fatigue on hand grip dynamometry along 30 seconds and on electromyographic activity in maximal voluntary isometric contractions (MVIC) and in dynamic actions along 10RM test for biceps braquialis in trained (TR) and untrained (NT) individuals and in dominant (DO) and non-dominant (ND) limbs. Eighteen young adult men, 9 untrained and 9 experienced in resistance training, participated in the study. The isometric handgrip dynamometry was assessed by grip dynamometer with precision load cell (Model G200, H500 Hand Kit - Biometrics®) in the position recommended by the ASHT. Electromyography (Miotool 400USB and software Miograph/Miotec®) from biceps braquialis isometry was collected in advance and subsequently the 10RM test and also from concentric actions during the test. Windows of 0.75 seconds from the center of the signal were analyzed. Significant difference in hand grip dynamometry between TR and NT was found for MIVC and average initial values for both DO and ND hemisides and also for initial values of endurance for ND. Significant difference between baseline and final values of each group was found only for MIVC in TR-DO and for average values within 30 s in TR-DO and TR-ND. In electromyography, only the TR-DO group showed significant reduction of FM during isometry between the initial and final values. Significant reduction in FM compared to the 1st contraction was observed from the 7th to NT and NT-DO and NT-ND and TR-ND, while the TR-DO was observed from the 6th. Significant increases in MVIC-normalized RMS were found in relation to the 1st contraction from the 3rd to TR-DO, TR-ND and NT-ND, while NT-DO increased significantly from the 2nd.It is concluded that it was possible to observe differences in the hand grip peak force and endurance due to resistance training before and after muscle fatigue, but no differences between hemisides. It was observed that TR can move larger loads and sustain longer the same mechanical performance than NT even in presence of fatigue signs, particularly for DO side. The NT group shows greater recruitment of new motor units before TR, in particular for ND side.
id UFTM_36de2f6d01b27c735f69d8bfc41beb0a
oai_identifier_str oai:bdtd.uftm.edu.br:tede/210
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
spelling BERTONCELLO, Dernivalhttp://lattes.cnpq.br/7142226105648914http://lattes.cnpq.br/6351305652609438LIMA, Fernando Max2016-02-23T17:56:48Z2013-03-27LIMA, Fernando Max. Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.. 2013. 72 f. Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2013.http://bdtd.uftm.edu.br/handle/tede/210Muscle fatigue is a limiting factor for both healthy and sick people and exercise can be beneficial. Ten RM tests give indicia of muscle strength and endurance and combining other analysis tools can provide valuable information. Therefore, the aim of this study was to analyze the effects of muscle fatigue on hand grip dynamometry along 30 seconds and on electromyographic activity in maximal voluntary isometric contractions (MVIC) and in dynamic actions along 10RM test for biceps braquialis in trained (TR) and untrained (NT) individuals and in dominant (DO) and non-dominant (ND) limbs. Eighteen young adult men, 9 untrained and 9 experienced in resistance training, participated in the study. The isometric handgrip dynamometry was assessed by grip dynamometer with precision load cell (Model G200, H500 Hand Kit - Biometrics®) in the position recommended by the ASHT. Electromyography (Miotool 400USB and software Miograph/Miotec®) from biceps braquialis isometry was collected in advance and subsequently the 10RM test and also from concentric actions during the test. Windows of 0.75 seconds from the center of the signal were analyzed. Significant difference in hand grip dynamometry between TR and NT was found for MIVC and average initial values for both DO and ND hemisides and also for initial values of endurance for ND. Significant difference between baseline and final values of each group was found only for MIVC in TR-DO and for average values within 30 s in TR-DO and TR-ND. In electromyography, only the TR-DO group showed significant reduction of FM during isometry between the initial and final values. Significant reduction in FM compared to the 1st contraction was observed from the 7th to NT and NT-DO and NT-ND and TR-ND, while the TR-DO was observed from the 6th. Significant increases in MVIC-normalized RMS were found in relation to the 1st contraction from the 3rd to TR-DO, TR-ND and NT-ND, while NT-DO increased significantly from the 2nd.It is concluded that it was possible to observe differences in the hand grip peak force and endurance due to resistance training before and after muscle fatigue, but no differences between hemisides. It was observed that TR can move larger loads and sustain longer the same mechanical performance than NT even in presence of fatigue signs, particularly for DO side. The NT group shows greater recruitment of new motor units before TR, in particular for ND side.A fadiga muscular é fator limitante para pessoas saudáveis e enfermas e a prática de exercícios pode ser benéfica. Testes de 10 RM dão indícios de força e resistência muscular e o uso de outras ferramentas de análise concomitantemente pode fornecer informações valiosas. Por isso, objetivou-se analisar os efeitos da fadiga muscular na dinamometria de preensão palmar ao longo de 30 segundos e na atividade eletromiográfica em ações isométricas voluntárias máximas e em ações dinâmicas ao longo de teste de 10RM para bíceps braquial em indivíduos treinados (TR) e não treinados (NT) e em membros dominantes (DO) e não dominantes (ND). Participaram 18 homens adultos jovens, 9 não treinados e 9 experientes em treinamento resistido. A força isométrica de preensão palmar foi avaliada por dinamômetro de preensão com célula de carga de precisão (modelo G200, Kit de mão H500 - Biometrics®) em posição recomendada pela ASHT. Eletromiografia (Miotool 400USB e software Miograph/Miotec®) do bíceps braquial foi coletada em isometria antes e após às 10 RM e em ação concêntrica durante o teste. Janelas de 0,75 segundos do centro do sinal concêntrico foram analisadas. Diferença significativa na dinamometria foi encontrada entre os grupos TR e NT para os valores de CIVM e de média iniciais e finais tanto para o lado DO quanto ND e também para os valores iniciais de endurance para o lado ND. Diferença significativa entre os valores iniciais e finais de cada grupo foram encontradas somente para a CIVM do TR-DO e para média em 30 s do TR-DO e TR-ND. Na eletromiografia apenas o grupo TR-DO apresentou redução significativa da FM entre a isometria inicial e final. Redução significativa na FM em relação à 1ª contração foi observada a partir da 7ª para NT-DO e NT-ND e para TR-ND, enquanto que no TR-DO observou-se a partir da 6ª. Aumento significativo no RMS normalizado pela CIVM foi encontrado em relação à 1ª contração a partir da 3ª para TR-DO e TR-ND e para NT-ND, enquanto que NT-DO apresentou aumento significativo a partir da 2ª. Conclui-se que foi possível observar diferença na força e na resistência de preensão palmar em decorrência do treinamento resistido antes e após fadiga muscular, porém sem diferenças entre os hemicorpos. Observou-se que TR conseguem mover maior carga e sustentar por mais tempo o mesmo desempenho mecânico com sinais de fadiga que NT, em especial para o lado DO. Já o grupo NT apresenta incremento maior do recrutamento de novas unidades motoras antes do TR, em especial para o lado ND.application/pdfhttp://bdtd.uftm.edu.br/retrieve/818/Dissert%20Fernando%20M%20Lima.pdf.jpgporUniversidade Federal do Triângulo MineiroPrograma de Pós-Graduação em Educação FísicaUFTMBrasilInstituto de Ciências da Saúde - ICS::Curso de Graduação em Educação FísicaABAD, C.C.C. et al. Efeito do exercício aeróbico e resistido no controle autonômico e nas variáveis hemodinâmicas de jovens saudáveis. Revista Brasileira de Educação Física e Esporte (Impr.), São Paulo, v. 24, n. 4, Dec. 2010. ACHE DIAS, J. et al.Força de preensão palmar: métodos de avaliação e fatores que influenciam a medida.Revista Brasileira de Cineantropometria e Desempenho Humano, Florianópolis, v. 12, n. 3, p. 209-216, 2010. ADEDOYIN, R. A. et al. Reference Values for Handgrip Strength Among Healthy Adults in Nigeria. Hong Kong Physiotherapy Journal, Hong Kong, v. 27, n. 1, p. 21-29, 2009. AHTIAINEN JP; HÄKKINEN K. Strength athletes are capable to produce greater muscle activation and neural fatigue during high-intensity resistance exercise than nonathletes. The Journal of Strength and Conditioning Research, Lincoln, v. 23, n. 4, p. 1129-34, 2009. ALLEN, D. G.; LAMB, G. D.; WESTERBLAD, H. Skeletal Muscle Fatigue: Cellular Mechanisms, Physiological Reviews, Bethesda, v. 88, n. 1, p. 287–332, 2008. ALLEN, D. G.; TRAJANOVSKA, S. The multiple roles of phosphate in muscle fatigue. Frontiers in Physiology, [S.L.], v. 3, p. 463, 2012. AMADIO, A. C.; SERRAO, J. C. Contextualização da biomecânica para a investigação do movimento: fundamentos, métodos e aplicações para análise da técnica esportiva. Revista Brasileira de Educação Física e Esporte, São Paulo, v. 21, p. 61-85, 2007. AMERICAN COLLEGE OF SPORTS MEDICINE. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, Madison, v. 41, n. 3, p. 687-708, 2009. AMOSUN, S. L.; MOYO, A.; MATARA, C. Trends in hand grip strength in some adult male Zimbabseans. British Journal of Occupational Therapy, London, v. 58, p. 345–8, 1995. AZEVEDO, F. M. Avaliação do sinal eletromiográfico como parâmetro para a determinação do limiar de fadiga muscular. 2007. 125 f. Tese (Doutorado em Educação Física) – Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, 2007. BARBELA, A. M. F.; DUARTE, M. Utilização da plataforma de força para aquisição de dados cinéticos durante a marcha humana. 2006. 22 f. Dissertação (Mestrado em Educação Física) – Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, 2006. BASMANJAN, J. V.; DE LUCA, C. J. Muscles Alive: Their functions revealed by electromyography. 5. ed. Baltimore: Williams e Wilkins, 1985. BECHTOL, C. O. Grip test: the use of a dynamometer with adjustable handle spacings. The Journal of Bone and Joint Surgery, Boston, v. 36, p. 820–824, 1954. BEHM, D. G. et al. Intermuscle differences in activation. Muscle Nerve, Boston, v. 25, n. 2, p. 236–243, 2002. BENSON, C.; DOCHERTY, D.; BRANDENBURG, J. Acute neuromuscular responses to resistance training performed at different loads. Journal of Science and Medicine in Sport, Belconnen, v. 9, n. 1-2, p. 135-142, 2006. BIGLAND‐RITCHIE, B. Muscle fatigue and the influence of changing neural drive. Clinics in Chest Medicine, Philadelphia, v. 5, n. 1, p. 21–34, 1984. BIGLAND-RITCHIE, B.; CAFARELLI, E.; VØLLESTAD, N. K. Fatigue of submaximal static contractions. Acta Physiologica Scandinavica - Supplement, Stockholm, v. 556, p. 137–148, 1986. BILLAUT, F. et al. Effect of high-intensity intermittent cycling sprints on neuromuscular activity. International Journal of Sports Medicine, Stuttgart, v. 27, n. 1, p. 25–30, 2006. SURFACE ELECTROMYOGRAPHY FOR THE NON-INVASIVE ASSESSMENT OF MUSCLES. Recommendations for sensor locations on individual muscles. Coordenado e gerenciado por Dr. Hermens e Freriks. Enschede. Disponível em: < http://seniam.org/>. Acesso em: 03 jun. 2012. BIOMETRICS LTD. Newport. Disponível em:<http://www.biometricsltd.com/images/g200eval-large.jpg>. Acesso em: 02 mar. 2013. BISHOP, D.; GIRARD, O.; MENDEZ-VILLANUEVA, A. Repeated-sprint ability – part II: recommendations for training. Sports Medicine, Auckland, v. 41, n. 9, p, 741–756, 2011. BLOOMFIELD, S. A. Changes in musculoskeletal structure and function with prolonged bed rest. Medicine and Science in Sports and Exercise, Madison, v. 29, n. 2, p. 197–206, 1997. BOGDANIS, G. C. Effects of physical activity and inactivity on muscle fatigue. Frontiers in Physiology, [S.l.], v. 3, p. 142, 2012. BOHANNON, R. W. Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Archives of Physical Medicine and Rehabilitation, Chicago, v. 78, n. 1, p. 26 –32, 1997. BOHANNON, R. W. et al. Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy, London, v. 92, n. 1, p. 11-15, 2006. BROWN, L. E.; WEIR, J. P. ASEP procedures recommendation I: accurate assessment of muscular strength and power. Journal of Exercise Physiology, Duluth, v. 4, n. 5, p. 1-21, 2001. BURDEN, A. How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. Journal of Electromyography and Kinesiology, New York, v. 20, n. 6, p. 1023–1035, 2010. CAIXETA, A. P. L. A influência do posicionamento do cotovelo na avaliação da força de preensão palmar. 2008. 70 f. Dissertação (Mestrado em ciências da saúde), Universidade de Brasília, Brasília, 2008. CALLEWAERT, M. et al. Quadriceps Muscle Fatigue in Trained and Untrained Boys. International Journal of Sports Medicine, Stuttgart, v. 34, n. 1, p. 14-20, 2013. CATELLI, D. S. Estudos de contrações isométricas do quadríceps em portadores de síndrome dolorosa femoropatelar – SDFP. 2010. 100 f. Dissertação (Mestrado em Bioengenharia) – Bioengenharia, Universidade de São Paulo, São Carlos, 2010. CHATTERJEE, S.; CHOWDHURI, B. J. Comparison of grip strength and isomeric endurance between the right and left hands of men and their relationship with age and other physical parameters. Journal of Human Ergology, Tokyo, v. 20, n. 1, p. 41-50, Jun. 1991. CHAVES, C. P. G. et al. Déficit bilateral nos movimentos de flexão e extensão de perna e flexão de cotovelo. Revista Brasileira de Medicina do Esporte, São Paulo, v. 10, n. 6, p. 505-508, 2004. COLDHAM, F.; LEWIS, J.; LEE, H. The Reliability of One vs. Three Grip Trials in Symptomatic and Asymptomatic Subjects. Journal of Hand Therapy, Philadelphia, v. 19, n. 3, p. 318-327, Jul–Set. 2006. CROSBY, C. A.; WEHBE, M. A.; MAWR, B. Hand strength: normative values. The Journal of Hand Surgery, St. Louis, v. 9, n. 4, p. 665-670, 1994. DESROSIERS, J.; BRAVO, G.; HÉBERT, R. Isometric grip endurance of healthy elderly men and women, Archives of Gerontology and Geriatrics, Amsterdam, v. 24, n. 1, p. 75-85, Jan–Fev. 1997. DISSELHORST-KLUG, C.; SCHMITZ-RODE, T.; RAU, G. Surface electromyography and muscle force: limits in sEMG-force relationship and new approaches for applications. Clinical Biomechanics, Huddersfield, v. 24, n. 3, p. 225-235, 2009. EDWARDS, R. H. T. Human muscle function and fatigue. In: PORTER, R.; WHELAN, J. Human Muscle Fatigue: Physiological Mechanisms. London: Pitman Medical, 1981. p. 1–18. ENOKA, R. M.; STUART, D.G. Neurobiology of muscle fatigue. Journal of Applied Physiology, Washington, v. 72, n. 5, p. 1631-1648, 1992. EVANS, N. Anatomia da musculação. Barueri, SP: Manole, 2007. FERNANDES, L. F. R. M. et al. Correlações entre força de preensão manual e variáveis antropométricas da mão de jovens adultos. Fisioterapia e Pesquisa, São Paulo, v. 18, n. 2, p. 151-156, 2011. FERNANDES, A. A.; MARINS, J. C. B. Teste de força de preensão manual: análise metodológica e dados normativos em atletas. Fisioterapia em Movimento, Curitiba, v. 24, n. 3, p. 567-578, 2011. FERREIRA, A. C. C. et al. Força de preensão palmar e pinças em indivíduos sadios entre 6 e 19 anos. Acta Ortopédica Brasileira, São Paulo, v. 19, n. 2, p. 92-97, 2011. FITTS, R. H. Cellular mechanisms of muscle fatigue. Physiological Reviews, Bethesda, v. 74, n. 1, p. 49–94, 1994. FITTS, R. H. New insights on sarcoplasmic reticulum calcium regulation in muscle fatigue. Journal of Applied Physiology, Washington, v. 111, n. 2, p. 345-346, 2011. FITTS, R. H. Cellular, molecular, and metabolic basis of muscle fatigue. In: ________. Comprehensive Physiology, 2011. p. 1151-1183. GABRIEL, D.A.; KAMEN, G.; FROST, G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Medicine, Auckland, v. 36, n. 2, p. 133-149, 2006. GARCIA, M. A. C.; MAGALHAES, J.; IMBIRIBA, L. A. Temporal behavior of motor units action potential velocity under muscle fatigue conditions. Revista Brasileira de Medicina do Esporte, Niterói, v. 10, n. 4, 2004. GONZÁLEZ-IZAL, M. et al. Electromyographic models to assess muscle fatigue. Journal of Electromyography and Kinesiology, New York, v. 22, n. 4, p. 501-12, 2012. GREEN, H. Metabolic determinants of activity induced muscular fatigue. In: Hargreaves, M. Exercise Metabolism, Champaign, IL: Human Kinetics, 221-256, 1995. GUEDES, D. P.; GUEDES, J. E. R. P. Proposição de equações para predição da quantidade de gordura corporal em adultos jovens. Semina – Revista Cultural e Científica da Universidade Estadual de Londrina, Londrina, v. 12, n. 2, p. 61-70, 1991. GUEDES, D. P.; GUEDES, J. E. R. P. Manual prático para avaliação em educação física. Barueri, SP: Manole, 2006. GUFFEY, D.R.; GERVASI, B.J.; MAES, A.A.; MALEK, M.H. Estimating electromyographic and heart rate fatigue thresholds from a single treadmill test. Muscle Nerve, Boston, v. 46, n. 4, p. 577-581, 2012. GÜNTHER, C. M. et al. Grip strength in healthy Caucasian adults: reference values. The Journal of Hand Surgery, St Louis, v. 33, n. 4, p. 558-565, 2008. HÄKKINEN, K.; AHTIAINEN, J. P. Strength athletes are capable to produce greater muscle activation and neural fatigue during high-intensity resistance exercise than nonathletes. Journal of Strength and Conditioning Research, Lincoln, v. 23, n. 4, p. 1129-1134, 2009. HAMILTON-FAIRFAX, A.; BALNAVE, R.; ADAMS. R. Review of sincerity of effort testing. Safety Science, Amsterdam, v. 25, n. 1-3, p. 237–245, Fev-Abr. 1995. HANTEN, W. P. et al.Maximum grip strength in normal subjects from 20 to 64 years of age. Journal of Hand Therapy, Philadelphia, v. 12, n. 3, p. 193–200, 1999. HERMENS, H. J. et al. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, New York, v. 10, n. 5, p. 361-374, 2000. HEYWARD, V. ASEP Methods Recommendation: body composition assessment. Journal of Exercise Physiology, Duluth, v. 4, n. 4, p. 1-12, 2001. HUBERT, M. Determinação do procedimento para coleta de dados biomecânicos da saída no nado crawl. 2005. 86 f. Dissertação (Mestrado em Ciências do Movimento Humano) – Centro de Educação Física, Fisioterapia e Desportos, Universidade do Estado de Santa Catarina, Florianópolis, 2005. HURLEY, B. F.; HANSON, E. D.; SHEAFF, A. K. Strength training as a countermeasure to aging muscle and chronic disease. Sports Medicine, Auckland, v. 41, n. 4, p. 289–306, Abr. 2011. INTERNATIONAL SOCIETY OF ELETROPHISIOLOGY AND KINESIOLOGY. Standards for Reporting EMG data. Journal of Electromyography and Kinesiology, New York, v. 9, n. 1, p. III-IV, 1999. IZQUIERDO, M. et al. Effects of strength training on muscle fatigue mapping from surface EMG and blood metabolites. Medicine and Science in Sports and Exercise, Madison, v. 43, n. 2, p. 303-311, 2011. JAKOBSEN, L. H.; RASK, I. K.; KONDRUP, J. Validation of handgrip strength and endurance as a measure of physical function and quality of life in healthy subjects and patients. Nutrition, Burbank, v. 26, n.5, p. 542–550, 2010. JONES, D. W.; ROBERTSON, L.D.; FIGONI, S. F. A strength-endurance index for power grip. Journal of Occupational Rehabilitation, New York, v. 19, n. 1, p. 56-63, Mar. 2009. JULIENNE, R.; GAUTHIER, A.; DAVENNE, D. Fatigue-resistance of the internal rotator muscles in the tennis player's shoulder: isokinetic and electromyographic analysis. Physical Therapy in Sport, Edinburgh, v. 13, n. 1, p. 22-6, 2012. KLAPANIS, P.A. et al. Surface EMG analysis on normal subjects based on isometric voluntary contraction. Journal of Electromyography and Kinesiology, New York, v. 19, n. 1, p. 157-171, 2009. KUPA, E. J. et al. Effects of muscle fiber type and size on EMG median frequency and conduction velocity. Journal of Applied Physiology, Washington, v. 79, n. 1, p. 23–32, 1995. LAGERSTRÖM, C.; NORDGREN, B. On the reliability and usefulness of methods for grip strength measurement. Scandinavian Journal of Rehabilitation Medicine, Stockholm, v. 30, n. 3, p. 113–119, Set. 1998. LUNA-HEREDIA, E.; MARTÍN-PEÑA, G.; RUIZ-GALIANA, J. Handgrip dynamometry in healthy adults. Clinical Nutrition, Edinburgh, v. 24, n. 2, p. 250–258, 2005. MACHADO, J. et al. Vias de sinalização intracelular na atrofia muscular e no treinamento resistido. Fisioterapia em Movimento, Curitiba, v. 22, n. 3, p. 383-393, 2009. MALEK, M. H.; COBURN, J. W. The utility of electromyography and mechanomyography for assessing neuromuscular function: a noninvasive approach. Physical Medicine & Rehabilitation Clinics of North America, Philadelphia, v. 23, n.1, p. 23-32, 2012. MASSY-WESTROPP, N. et al. Measuring grip strength in normal adults: reference ranges and a comparison of electronic and hydraulic instruments. Journal of Hand Surgery, St. Louis, v. 29, n. 3, p. 514-519, 2004. MASUDA, K. et al. Changes in surface EMG parameters during static and dynamic fatiguing contractions. Journal of Electromyography and Kinesiology, New York, v. 9, n. 1, p. 39-46, 1999. MATHIOWETZ, V. Effects of three trials on grip and pinch strength measurements. Journal of Hand Therapy, Philadelphia, v. 3, n. 4, p. 195–198, 1990. MCARDLE, W. D.; KATCH, F. I.; KATCH, V. L. Exercise physiology: Nutrition, energy, and human performance. Lippincott Williams & Wilkins, 2009. MCARDLE, W. D.; KATCH, F. I.; KATCH, V. L. Fisiologia do exercício: energia, nutrição e desempenho humano. 7. ed. Rio de Janeiro: Guanabara Koogan, 2011. MENDEZ-VILLANUEVA, A.; HAMER, P.; BISHOP, D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. European Journal of Applied Physiology, Berlin, v. 103, n. , p. 411–419, 2008. MERLETTI, R.; RAINOLDI, A.; FARINA, D. Surface electromyography for noninvasive characterization of muscle. Exercise and Sport Sciences Review, New York, v. 29, n. 1, p. 20-25, 2001. MIOTEC EQUIPAMENTOS BIOMÉDICOS. Produtos. Porto Alegre-RS. Disponível em:<http://www.miotec.com.br/biomecanica/produtos.html>. Acesso em: 02 mar. 2013. MONTAZER, M. A.; THOMAS, J. G. Grip strength as a function of repetitive trials. Perceptual and Motor Skills, Missoula, v. 73, n. 3, p. 804–806, 1991. MONTEIRO, W. D.; SIMÃO, R. Existe déficit bilateral na realização de 10RM em exercícios de braços e pernas? Revista Brasileira de Medicina do Esporte, São Paulo, v. 12, n. 3, p. 115-118, 2006. MOREIRA, D.; GODOY, J. R. P.; SILVA JUNIOR, W. Estudo sobre a realização da pressão palmar com a utilização do dinamômetro: considerações anatômicas e cinesiológicas. Fisioterapia Brasil, Rio de Janeiro, v. 2, n. 5, p. 295-300, 2001. NG, L. J.; SIH, B. L.; STUHMILLER, J. H. An integrated exercise response and muscle fatigue model for performance decrement estimates of workloads in oxygen-limiting environments. European Journal of Applied Physiology, Berlin, v. 112, n. 4, p. 1229-1249, 2012. NICOLAY, C. W.; WALKER, A. L. Grip strength and endurance: Influences of anthropometric variation, hand dominance, and gender. International Journal of Industrial Ergonomics, v. 35, n. 7, p. 605-618, 2005. NORDLUND, M. M.; THORSTENSSON, A.; CRESSWELL, A. G. Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions. Journal of Applied Physiology, Washington, v. 96, n. 1, p. 218–225, 2004. NWUGA, V.C. Grip strength and grip endurance in physical therapy students. Archives of Physical Medicine and Rehabilitation, v. 56, p.77-83, 1975. OLIVEIRA, A. S. C.; GONÇALVES, M. EMG amplitude and frequency parameters of muscular activity: Effect of resistance training based on electromyographic fatigue threshold. Journal of Electromyography and Kinesiology, New York, v. 19, n. 2, p. 295-303, 2009. OLIVEIRA, F. B. Força de preensão palmar em idosos institucionalizados do município de Goiânia, Goiás, Brasil: características gerais e relação com índice de massa corporal. 2009. Dissertação (Mestrado em ciências da saúde). Universidade de Brasília, Brasília, 2009. PATTEN, C.; KAMEN, G. Adaptations in motor unit discharge activity with force control training in young and older human adults. European Journal of Applied Physiology, Berlin, v. 83, n. 2-3, p. 128-143, 2000. PETERSEN, P. et al. Grip strength and hand dominance: challenging the 10% rule. American Journal of Occupational Therapy, Rockville, v. 43, n. 7, p. 444–447, 1989. RACINAIS, S. et al. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Medicine and Science in Sports and Exercise, Madison, v. 39, n. 2, p. 268–274, 2007. REDDON, J. R. et al.Hand dynamometer: effects of trials and sessions. Perceptual and Motor Skills, Missoula, v. 61, n. 3f, p. 1195–1198, 1985. REUTER, S. E.; MASSY-WESTROPP, N.; EVANS, A. M. Reliability and validity of indices of hand-grip strength and endurance. Australian Occupational Therapy Journal, Melbourne, v. 58, n. 2, p. 82–87, 2011. ROBERTS, H. C. et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardized approach. Age and Ageing, London, v. 40, n. 4, p. 423–429, 2011. ROBERTSON, L. D. et al. Muscular fatigue patterning in power grip assessment. Journal of Occupational Rehabilitation, v. 6, n. 1, p. 71-85, 1996. RIMMER, J. H.; SCHILLER, W.; CHEN, M. D. Effects of disability-associated low energy expenditure deconditioning syndrome. Exercise and Sport Sciences Review, New York, v. 40, n. 1, p. 22–29, 2012. SANTOS, M. G.; DEZAN, V. H.; SARRAF. T. A. Bases metabólicas da fadiga muscular aguda. Revista Brasileira de Ciência e Movimento, Brasília, v. 11, n. 1, p. 07-12, 2003. SANTOS, M. C. A. et al. Análise da Fadiga Muscular Localizada em Atletas e Sedentários Através de Parâmetros de Frequência do Sinal Eletromiográfico. Revista Brasileira de Medicina do Esporte, São Paulo, v. 14, n. 6, p. 509-512, 2008. SCHMIDT, R. T.; TOEWS, J. V. Grip strength as measured by the Jamar dynamometer. Archives of Physical Medicine and Rehabilitation, Chicago, v. 51, n. 6, p. 321–327, 1970. SHECHTMAN, O. et al. Reliability and Validity of the BTE-Primus Grip Tool. Journal of Hand Therapy, Philadelphia, v. 16, p. 36–42, 2003. SIMÃO, R.; MONTEIRO, W. D.; ARAÚJO, C. G. S. Potência muscular máxima na flexão do cotovelo uni e bilateral. Revista Brasileira de Medicina do Esporte, São Paulo, v. 7, n. 5, p. 157-62, 2001. SPIERING, B. A. et al.Resistance Exercise Biology: manipulation of resistance Exercice Programme Variables Determines the Responses of Cellular and Molecular Signalling Pathways. Sports Medicine, Auckland, v. 38, n. 7, p. 527-540, 2008. SUNDSTRUP, E. et al. Muscle activation strategies during strength training with heavy loading vs. Repetitions to failure. The Journal of Strength & Conditioning Research, Lincoln, v. 26, n. 7, p. 1897-1903, 2012. SURFACE ELECTROMYOGRAPHY FOR THE NON-INVASIVE ASSESSMENT OF MUSCLES. Recommendations for sensor locations on individual muscles. Coordenado e gerenciado por Dr. Hermens e Freriks. Enschede. Disponível em: < http://seniam.org/>. Acesso em: 03 jun. 2012. TENAN, M. S. et al. The relationship between blood potassium, blood lactate, and electromyography signals related to fatigue in a progressive cycling exercise test. Journal of Electromyography and Kinesiology, New York, v. 21, n. 1, p. 25–32, 2011. TROSSMAN, P. B.; LI, P. W. The effect of the duration of intertrial rest periods on isometric grip strength performance in young adults. Occupational Therapy Journal of Research, Thorofare, v. 9, n. 6, p. 362–378, 1989. UZUN, S. et al. Evaluation of muscle fatigue of wheelchair basketball players with spinal cord injury using recurrence quantification analysis of surface EMG. European Journal of Applied Physiology, Berlin, v. 112, n. 11, p. 3847-3857, 2012. VELOSO, J. et al. Efeitos do intervalo de recuperação entre as séries sobre a pressão arterial após exercícios resistidos. Arquivo Brasileiro de Cardiologia, São Paulo, v. 94, n. 4, Abr. 2010. WALKER, S. et al. Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. Journal of Electromyography and Kinesiology, New York, v. 22, n. 3, p. 356-62, 2012. WALLSTRÖM, Å; NORDENSKIÖLD, U. Assessing hand grip endurance with repetitive maximal isometric contractions. Journal of Hand Therapy, Philadelphia, v. 14, n. 4, p. 279-285, 2001.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessCotoveloEletromiografiaFadiga muscularForça da mãoTreinamento de ResistênciaElbowElectromyographyHand StrengthMuscle FatigueResistance TrainingEducação FísicaDinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTMLICENSElicense.txtlicense.txttext/plain; charset=utf-81976http://bdtd.uftm.edu.br/bitstream/tede/210/1/license.txt1e1650138dd271baea0105346966c99cMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://bdtd.uftm.edu.br/bitstream/tede/210/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://bdtd.uftm.edu.br/bitstream/tede/210/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://bdtd.uftm.edu.br/bitstream/tede/210/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissert Fernando M Lima.pdfDissert Fernando M Lima.pdfDissert Fernando M Limaapplication/pdf1864733http://bdtd.uftm.edu.br/bitstream/tede/210/5/Dissert%20Fernando%20M%20Lima.pdfb2c03e011618323dd7c46305f475161cMD55TEXTDissert Fernando M Lima.pdf.txtDissert Fernando M Lima.pdf.txtExtracted Texttext/plain119414http://bdtd.uftm.edu.br/bitstream/tede/210/6/Dissert%20Fernando%20M%20Lima.pdf.txtbee15d768a338fbe8cd5297a8570067cMD56THUMBNAILDissert Fernando M Lima.pdf.jpgDissert Fernando M Lima.pdf.jpgGenerated Thumbnailimage/jpeg1943http://bdtd.uftm.edu.br/bitstream/tede/210/7/Dissert%20Fernando%20M%20Lima.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD57tede/2102018-03-23 11:38:43.092oai:bdtd.uftm.edu.br:tede/210TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIApGZWRlcmFsIGRvIFRyacOibmd1bG8gTWluZWlybyAoVUZUTSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRlRNIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gCnBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBVRlRNIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGVE0gCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZUTSwgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZUTSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2018-03-23T14:38:43Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
dc.title.por.fl_str_mv Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.
title Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.
spellingShingle Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.
LIMA, Fernando Max
Cotovelo
Eletromiografia
Fadiga muscular
Força da mão
Treinamento de Resistência
Elbow
Electromyography
Hand Strength
Muscle Fatigue
Resistance Training
Educação Física
title_short Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.
title_full Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.
title_fullStr Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.
title_full_unstemmed Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.
title_sort Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.
author LIMA, Fernando Max
author_facet LIMA, Fernando Max
author_role author
dc.contributor.advisor1.fl_str_mv BERTONCELLO, Dernival
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7142226105648914
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6351305652609438
dc.contributor.author.fl_str_mv LIMA, Fernando Max
contributor_str_mv BERTONCELLO, Dernival
dc.subject.por.fl_str_mv Cotovelo
Eletromiografia
Fadiga muscular
Força da mão
Treinamento de Resistência
topic Cotovelo
Eletromiografia
Fadiga muscular
Força da mão
Treinamento de Resistência
Elbow
Electromyography
Hand Strength
Muscle Fatigue
Resistance Training
Educação Física
dc.subject.eng.fl_str_mv Elbow
Electromyography
Hand Strength
Muscle Fatigue
Resistance Training
dc.subject.cnpq.fl_str_mv Educação Física
description Muscle fatigue is a limiting factor for both healthy and sick people and exercise can be beneficial. Ten RM tests give indicia of muscle strength and endurance and combining other analysis tools can provide valuable information. Therefore, the aim of this study was to analyze the effects of muscle fatigue on hand grip dynamometry along 30 seconds and on electromyographic activity in maximal voluntary isometric contractions (MVIC) and in dynamic actions along 10RM test for biceps braquialis in trained (TR) and untrained (NT) individuals and in dominant (DO) and non-dominant (ND) limbs. Eighteen young adult men, 9 untrained and 9 experienced in resistance training, participated in the study. The isometric handgrip dynamometry was assessed by grip dynamometer with precision load cell (Model G200, H500 Hand Kit - Biometrics®) in the position recommended by the ASHT. Electromyography (Miotool 400USB and software Miograph/Miotec®) from biceps braquialis isometry was collected in advance and subsequently the 10RM test and also from concentric actions during the test. Windows of 0.75 seconds from the center of the signal were analyzed. Significant difference in hand grip dynamometry between TR and NT was found for MIVC and average initial values for both DO and ND hemisides and also for initial values of endurance for ND. Significant difference between baseline and final values of each group was found only for MIVC in TR-DO and for average values within 30 s in TR-DO and TR-ND. In electromyography, only the TR-DO group showed significant reduction of FM during isometry between the initial and final values. Significant reduction in FM compared to the 1st contraction was observed from the 7th to NT and NT-DO and NT-ND and TR-ND, while the TR-DO was observed from the 6th. Significant increases in MVIC-normalized RMS were found in relation to the 1st contraction from the 3rd to TR-DO, TR-ND and NT-ND, while NT-DO increased significantly from the 2nd.It is concluded that it was possible to observe differences in the hand grip peak force and endurance due to resistance training before and after muscle fatigue, but no differences between hemisides. It was observed that TR can move larger loads and sustain longer the same mechanical performance than NT even in presence of fatigue signs, particularly for DO side. The NT group shows greater recruitment of new motor units before TR, in particular for ND side.
publishDate 2013
dc.date.issued.fl_str_mv 2013-03-27
dc.date.accessioned.fl_str_mv 2016-02-23T17:56:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Fernando Max. Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.. 2013. 72 f. Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2013.
dc.identifier.uri.fl_str_mv http://bdtd.uftm.edu.br/handle/tede/210
identifier_str_mv LIMA, Fernando Max. Dinamometria de preensão palmar e análise eletromiográfica em teste de 10 repetições máximas para flexão de cotovelo.. 2013. 72 f. Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2013.
url http://bdtd.uftm.edu.br/handle/tede/210
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ABAD, C.C.C. et al. Efeito do exercício aeróbico e resistido no controle autonômico e nas variáveis hemodinâmicas de jovens saudáveis. Revista Brasileira de Educação Física e Esporte (Impr.), São Paulo, v. 24, n. 4, Dec. 2010. ACHE DIAS, J. et al.Força de preensão palmar: métodos de avaliação e fatores que influenciam a medida.Revista Brasileira de Cineantropometria e Desempenho Humano, Florianópolis, v. 12, n. 3, p. 209-216, 2010. ADEDOYIN, R. A. et al. Reference Values for Handgrip Strength Among Healthy Adults in Nigeria. Hong Kong Physiotherapy Journal, Hong Kong, v. 27, n. 1, p. 21-29, 2009. AHTIAINEN JP; HÄKKINEN K. Strength athletes are capable to produce greater muscle activation and neural fatigue during high-intensity resistance exercise than nonathletes. The Journal of Strength and Conditioning Research, Lincoln, v. 23, n. 4, p. 1129-34, 2009. ALLEN, D. G.; LAMB, G. D.; WESTERBLAD, H. Skeletal Muscle Fatigue: Cellular Mechanisms, Physiological Reviews, Bethesda, v. 88, n. 1, p. 287–332, 2008. ALLEN, D. G.; TRAJANOVSKA, S. The multiple roles of phosphate in muscle fatigue. Frontiers in Physiology, [S.L.], v. 3, p. 463, 2012. AMADIO, A. C.; SERRAO, J. C. Contextualização da biomecânica para a investigação do movimento: fundamentos, métodos e aplicações para análise da técnica esportiva. Revista Brasileira de Educação Física e Esporte, São Paulo, v. 21, p. 61-85, 2007. AMERICAN COLLEGE OF SPORTS MEDICINE. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, Madison, v. 41, n. 3, p. 687-708, 2009. AMOSUN, S. L.; MOYO, A.; MATARA, C. Trends in hand grip strength in some adult male Zimbabseans. British Journal of Occupational Therapy, London, v. 58, p. 345–8, 1995. AZEVEDO, F. M. Avaliação do sinal eletromiográfico como parâmetro para a determinação do limiar de fadiga muscular. 2007. 125 f. Tese (Doutorado em Educação Física) – Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, 2007. BARBELA, A. M. F.; DUARTE, M. Utilização da plataforma de força para aquisição de dados cinéticos durante a marcha humana. 2006. 22 f. Dissertação (Mestrado em Educação Física) – Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, 2006. BASMANJAN, J. V.; DE LUCA, C. J. Muscles Alive: Their functions revealed by electromyography. 5. ed. Baltimore: Williams e Wilkins, 1985. BECHTOL, C. O. Grip test: the use of a dynamometer with adjustable handle spacings. The Journal of Bone and Joint Surgery, Boston, v. 36, p. 820–824, 1954. BEHM, D. G. et al. Intermuscle differences in activation. Muscle Nerve, Boston, v. 25, n. 2, p. 236–243, 2002. BENSON, C.; DOCHERTY, D.; BRANDENBURG, J. Acute neuromuscular responses to resistance training performed at different loads. Journal of Science and Medicine in Sport, Belconnen, v. 9, n. 1-2, p. 135-142, 2006. BIGLAND‐RITCHIE, B. Muscle fatigue and the influence of changing neural drive. Clinics in Chest Medicine, Philadelphia, v. 5, n. 1, p. 21–34, 1984. BIGLAND-RITCHIE, B.; CAFARELLI, E.; VØLLESTAD, N. K. Fatigue of submaximal static contractions. Acta Physiologica Scandinavica - Supplement, Stockholm, v. 556, p. 137–148, 1986. BILLAUT, F. et al. Effect of high-intensity intermittent cycling sprints on neuromuscular activity. International Journal of Sports Medicine, Stuttgart, v. 27, n. 1, p. 25–30, 2006. SURFACE ELECTROMYOGRAPHY FOR THE NON-INVASIVE ASSESSMENT OF MUSCLES. Recommendations for sensor locations on individual muscles. Coordenado e gerenciado por Dr. Hermens e Freriks. Enschede. Disponível em: < http://seniam.org/>. Acesso em: 03 jun. 2012. BIOMETRICS LTD. Newport. Disponível em:<http://www.biometricsltd.com/images/g200eval-large.jpg>. Acesso em: 02 mar. 2013. BISHOP, D.; GIRARD, O.; MENDEZ-VILLANUEVA, A. Repeated-sprint ability – part II: recommendations for training. Sports Medicine, Auckland, v. 41, n. 9, p, 741–756, 2011. BLOOMFIELD, S. A. Changes in musculoskeletal structure and function with prolonged bed rest. Medicine and Science in Sports and Exercise, Madison, v. 29, n. 2, p. 197–206, 1997. BOGDANIS, G. C. Effects of physical activity and inactivity on muscle fatigue. Frontiers in Physiology, [S.l.], v. 3, p. 142, 2012. BOHANNON, R. W. Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Archives of Physical Medicine and Rehabilitation, Chicago, v. 78, n. 1, p. 26 –32, 1997. BOHANNON, R. W. et al. Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy, London, v. 92, n. 1, p. 11-15, 2006. BROWN, L. E.; WEIR, J. P. ASEP procedures recommendation I: accurate assessment of muscular strength and power. Journal of Exercise Physiology, Duluth, v. 4, n. 5, p. 1-21, 2001. BURDEN, A. How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. Journal of Electromyography and Kinesiology, New York, v. 20, n. 6, p. 1023–1035, 2010. CAIXETA, A. P. L. A influência do posicionamento do cotovelo na avaliação da força de preensão palmar. 2008. 70 f. Dissertação (Mestrado em ciências da saúde), Universidade de Brasília, Brasília, 2008. CALLEWAERT, M. et al. Quadriceps Muscle Fatigue in Trained and Untrained Boys. International Journal of Sports Medicine, Stuttgart, v. 34, n. 1, p. 14-20, 2013. CATELLI, D. S. Estudos de contrações isométricas do quadríceps em portadores de síndrome dolorosa femoropatelar – SDFP. 2010. 100 f. Dissertação (Mestrado em Bioengenharia) – Bioengenharia, Universidade de São Paulo, São Carlos, 2010. CHATTERJEE, S.; CHOWDHURI, B. J. Comparison of grip strength and isomeric endurance between the right and left hands of men and their relationship with age and other physical parameters. Journal of Human Ergology, Tokyo, v. 20, n. 1, p. 41-50, Jun. 1991. CHAVES, C. P. G. et al. Déficit bilateral nos movimentos de flexão e extensão de perna e flexão de cotovelo. Revista Brasileira de Medicina do Esporte, São Paulo, v. 10, n. 6, p. 505-508, 2004. COLDHAM, F.; LEWIS, J.; LEE, H. The Reliability of One vs. Three Grip Trials in Symptomatic and Asymptomatic Subjects. Journal of Hand Therapy, Philadelphia, v. 19, n. 3, p. 318-327, Jul–Set. 2006. CROSBY, C. A.; WEHBE, M. A.; MAWR, B. Hand strength: normative values. The Journal of Hand Surgery, St. Louis, v. 9, n. 4, p. 665-670, 1994. DESROSIERS, J.; BRAVO, G.; HÉBERT, R. Isometric grip endurance of healthy elderly men and women, Archives of Gerontology and Geriatrics, Amsterdam, v. 24, n. 1, p. 75-85, Jan–Fev. 1997. DISSELHORST-KLUG, C.; SCHMITZ-RODE, T.; RAU, G. Surface electromyography and muscle force: limits in sEMG-force relationship and new approaches for applications. Clinical Biomechanics, Huddersfield, v. 24, n. 3, p. 225-235, 2009. EDWARDS, R. H. T. Human muscle function and fatigue. In: PORTER, R.; WHELAN, J. Human Muscle Fatigue: Physiological Mechanisms. London: Pitman Medical, 1981. p. 1–18. ENOKA, R. M.; STUART, D.G. Neurobiology of muscle fatigue. Journal of Applied Physiology, Washington, v. 72, n. 5, p. 1631-1648, 1992. EVANS, N. Anatomia da musculação. Barueri, SP: Manole, 2007. FERNANDES, L. F. R. M. et al. Correlações entre força de preensão manual e variáveis antropométricas da mão de jovens adultos. Fisioterapia e Pesquisa, São Paulo, v. 18, n. 2, p. 151-156, 2011. FERNANDES, A. A.; MARINS, J. C. B. Teste de força de preensão manual: análise metodológica e dados normativos em atletas. Fisioterapia em Movimento, Curitiba, v. 24, n. 3, p. 567-578, 2011. FERREIRA, A. C. C. et al. Força de preensão palmar e pinças em indivíduos sadios entre 6 e 19 anos. Acta Ortopédica Brasileira, São Paulo, v. 19, n. 2, p. 92-97, 2011. FITTS, R. H. Cellular mechanisms of muscle fatigue. Physiological Reviews, Bethesda, v. 74, n. 1, p. 49–94, 1994. FITTS, R. H. New insights on sarcoplasmic reticulum calcium regulation in muscle fatigue. Journal of Applied Physiology, Washington, v. 111, n. 2, p. 345-346, 2011. FITTS, R. H. Cellular, molecular, and metabolic basis of muscle fatigue. In: ________. Comprehensive Physiology, 2011. p. 1151-1183. GABRIEL, D.A.; KAMEN, G.; FROST, G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Medicine, Auckland, v. 36, n. 2, p. 133-149, 2006. GARCIA, M. A. C.; MAGALHAES, J.; IMBIRIBA, L. A. Temporal behavior of motor units action potential velocity under muscle fatigue conditions. Revista Brasileira de Medicina do Esporte, Niterói, v. 10, n. 4, 2004. GONZÁLEZ-IZAL, M. et al. Electromyographic models to assess muscle fatigue. Journal of Electromyography and Kinesiology, New York, v. 22, n. 4, p. 501-12, 2012. GREEN, H. Metabolic determinants of activity induced muscular fatigue. In: Hargreaves, M. Exercise Metabolism, Champaign, IL: Human Kinetics, 221-256, 1995. GUEDES, D. P.; GUEDES, J. E. R. P. Proposição de equações para predição da quantidade de gordura corporal em adultos jovens. Semina – Revista Cultural e Científica da Universidade Estadual de Londrina, Londrina, v. 12, n. 2, p. 61-70, 1991. GUEDES, D. P.; GUEDES, J. E. R. P. Manual prático para avaliação em educação física. Barueri, SP: Manole, 2006. GUFFEY, D.R.; GERVASI, B.J.; MAES, A.A.; MALEK, M.H. Estimating electromyographic and heart rate fatigue thresholds from a single treadmill test. Muscle Nerve, Boston, v. 46, n. 4, p. 577-581, 2012. GÜNTHER, C. M. et al. Grip strength in healthy Caucasian adults: reference values. The Journal of Hand Surgery, St Louis, v. 33, n. 4, p. 558-565, 2008. HÄKKINEN, K.; AHTIAINEN, J. P. Strength athletes are capable to produce greater muscle activation and neural fatigue during high-intensity resistance exercise than nonathletes. Journal of Strength and Conditioning Research, Lincoln, v. 23, n. 4, p. 1129-1134, 2009. HAMILTON-FAIRFAX, A.; BALNAVE, R.; ADAMS. R. Review of sincerity of effort testing. Safety Science, Amsterdam, v. 25, n. 1-3, p. 237–245, Fev-Abr. 1995. HANTEN, W. P. et al.Maximum grip strength in normal subjects from 20 to 64 years of age. Journal of Hand Therapy, Philadelphia, v. 12, n. 3, p. 193–200, 1999. HERMENS, H. J. et al. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, New York, v. 10, n. 5, p. 361-374, 2000. HEYWARD, V. ASEP Methods Recommendation: body composition assessment. Journal of Exercise Physiology, Duluth, v. 4, n. 4, p. 1-12, 2001. HUBERT, M. Determinação do procedimento para coleta de dados biomecânicos da saída no nado crawl. 2005. 86 f. Dissertação (Mestrado em Ciências do Movimento Humano) – Centro de Educação Física, Fisioterapia e Desportos, Universidade do Estado de Santa Catarina, Florianópolis, 2005. HURLEY, B. F.; HANSON, E. D.; SHEAFF, A. K. Strength training as a countermeasure to aging muscle and chronic disease. Sports Medicine, Auckland, v. 41, n. 4, p. 289–306, Abr. 2011. INTERNATIONAL SOCIETY OF ELETROPHISIOLOGY AND KINESIOLOGY. Standards for Reporting EMG data. Journal of Electromyography and Kinesiology, New York, v. 9, n. 1, p. III-IV, 1999. IZQUIERDO, M. et al. Effects of strength training on muscle fatigue mapping from surface EMG and blood metabolites. Medicine and Science in Sports and Exercise, Madison, v. 43, n. 2, p. 303-311, 2011. JAKOBSEN, L. H.; RASK, I. K.; KONDRUP, J. Validation of handgrip strength and endurance as a measure of physical function and quality of life in healthy subjects and patients. Nutrition, Burbank, v. 26, n.5, p. 542–550, 2010. JONES, D. W.; ROBERTSON, L.D.; FIGONI, S. F. A strength-endurance index for power grip. Journal of Occupational Rehabilitation, New York, v. 19, n. 1, p. 56-63, Mar. 2009. JULIENNE, R.; GAUTHIER, A.; DAVENNE, D. Fatigue-resistance of the internal rotator muscles in the tennis player's shoulder: isokinetic and electromyographic analysis. Physical Therapy in Sport, Edinburgh, v. 13, n. 1, p. 22-6, 2012. KLAPANIS, P.A. et al. Surface EMG analysis on normal subjects based on isometric voluntary contraction. Journal of Electromyography and Kinesiology, New York, v. 19, n. 1, p. 157-171, 2009. KUPA, E. J. et al. Effects of muscle fiber type and size on EMG median frequency and conduction velocity. Journal of Applied Physiology, Washington, v. 79, n. 1, p. 23–32, 1995. LAGERSTRÖM, C.; NORDGREN, B. On the reliability and usefulness of methods for grip strength measurement. Scandinavian Journal of Rehabilitation Medicine, Stockholm, v. 30, n. 3, p. 113–119, Set. 1998. LUNA-HEREDIA, E.; MARTÍN-PEÑA, G.; RUIZ-GALIANA, J. Handgrip dynamometry in healthy adults. Clinical Nutrition, Edinburgh, v. 24, n. 2, p. 250–258, 2005. MACHADO, J. et al. Vias de sinalização intracelular na atrofia muscular e no treinamento resistido. Fisioterapia em Movimento, Curitiba, v. 22, n. 3, p. 383-393, 2009. MALEK, M. H.; COBURN, J. W. The utility of electromyography and mechanomyography for assessing neuromuscular function: a noninvasive approach. Physical Medicine & Rehabilitation Clinics of North America, Philadelphia, v. 23, n.1, p. 23-32, 2012. MASSY-WESTROPP, N. et al. Measuring grip strength in normal adults: reference ranges and a comparison of electronic and hydraulic instruments. Journal of Hand Surgery, St. Louis, v. 29, n. 3, p. 514-519, 2004. MASUDA, K. et al. Changes in surface EMG parameters during static and dynamic fatiguing contractions. Journal of Electromyography and Kinesiology, New York, v. 9, n. 1, p. 39-46, 1999. MATHIOWETZ, V. Effects of three trials on grip and pinch strength measurements. Journal of Hand Therapy, Philadelphia, v. 3, n. 4, p. 195–198, 1990. MCARDLE, W. D.; KATCH, F. I.; KATCH, V. L. Exercise physiology: Nutrition, energy, and human performance. Lippincott Williams & Wilkins, 2009. MCARDLE, W. D.; KATCH, F. I.; KATCH, V. L. Fisiologia do exercício: energia, nutrição e desempenho humano. 7. ed. Rio de Janeiro: Guanabara Koogan, 2011. MENDEZ-VILLANUEVA, A.; HAMER, P.; BISHOP, D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. European Journal of Applied Physiology, Berlin, v. 103, n. , p. 411–419, 2008. MERLETTI, R.; RAINOLDI, A.; FARINA, D. Surface electromyography for noninvasive characterization of muscle. Exercise and Sport Sciences Review, New York, v. 29, n. 1, p. 20-25, 2001. MIOTEC EQUIPAMENTOS BIOMÉDICOS. Produtos. Porto Alegre-RS. Disponível em:<http://www.miotec.com.br/biomecanica/produtos.html>. Acesso em: 02 mar. 2013. MONTAZER, M. A.; THOMAS, J. G. Grip strength as a function of repetitive trials. Perceptual and Motor Skills, Missoula, v. 73, n. 3, p. 804–806, 1991. MONTEIRO, W. D.; SIMÃO, R. Existe déficit bilateral na realização de 10RM em exercícios de braços e pernas? Revista Brasileira de Medicina do Esporte, São Paulo, v. 12, n. 3, p. 115-118, 2006. MOREIRA, D.; GODOY, J. R. P.; SILVA JUNIOR, W. Estudo sobre a realização da pressão palmar com a utilização do dinamômetro: considerações anatômicas e cinesiológicas. Fisioterapia Brasil, Rio de Janeiro, v. 2, n. 5, p. 295-300, 2001. NG, L. J.; SIH, B. L.; STUHMILLER, J. H. An integrated exercise response and muscle fatigue model for performance decrement estimates of workloads in oxygen-limiting environments. European Journal of Applied Physiology, Berlin, v. 112, n. 4, p. 1229-1249, 2012. NICOLAY, C. W.; WALKER, A. L. Grip strength and endurance: Influences of anthropometric variation, hand dominance, and gender. International Journal of Industrial Ergonomics, v. 35, n. 7, p. 605-618, 2005. NORDLUND, M. M.; THORSTENSSON, A.; CRESSWELL, A. G. Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions. Journal of Applied Physiology, Washington, v. 96, n. 1, p. 218–225, 2004. NWUGA, V.C. Grip strength and grip endurance in physical therapy students. Archives of Physical Medicine and Rehabilitation, v. 56, p.77-83, 1975. OLIVEIRA, A. S. C.; GONÇALVES, M. EMG amplitude and frequency parameters of muscular activity: Effect of resistance training based on electromyographic fatigue threshold. Journal of Electromyography and Kinesiology, New York, v. 19, n. 2, p. 295-303, 2009. OLIVEIRA, F. B. Força de preensão palmar em idosos institucionalizados do município de Goiânia, Goiás, Brasil: características gerais e relação com índice de massa corporal. 2009. Dissertação (Mestrado em ciências da saúde). Universidade de Brasília, Brasília, 2009. PATTEN, C.; KAMEN, G. Adaptations in motor unit discharge activity with force control training in young and older human adults. European Journal of Applied Physiology, Berlin, v. 83, n. 2-3, p. 128-143, 2000. PETERSEN, P. et al. Grip strength and hand dominance: challenging the 10% rule. American Journal of Occupational Therapy, Rockville, v. 43, n. 7, p. 444–447, 1989. RACINAIS, S. et al. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Medicine and Science in Sports and Exercise, Madison, v. 39, n. 2, p. 268–274, 2007. REDDON, J. R. et al.Hand dynamometer: effects of trials and sessions. Perceptual and Motor Skills, Missoula, v. 61, n. 3f, p. 1195–1198, 1985. REUTER, S. E.; MASSY-WESTROPP, N.; EVANS, A. M. Reliability and validity of indices of hand-grip strength and endurance. Australian Occupational Therapy Journal, Melbourne, v. 58, n. 2, p. 82–87, 2011. ROBERTS, H. C. et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardized approach. Age and Ageing, London, v. 40, n. 4, p. 423–429, 2011. ROBERTSON, L. D. et al. Muscular fatigue patterning in power grip assessment. Journal of Occupational Rehabilitation, v. 6, n. 1, p. 71-85, 1996. RIMMER, J. H.; SCHILLER, W.; CHEN, M. D. Effects of disability-associated low energy expenditure deconditioning syndrome. Exercise and Sport Sciences Review, New York, v. 40, n. 1, p. 22–29, 2012. SANTOS, M. G.; DEZAN, V. H.; SARRAF. T. A. Bases metabólicas da fadiga muscular aguda. Revista Brasileira de Ciência e Movimento, Brasília, v. 11, n. 1, p. 07-12, 2003. SANTOS, M. C. A. et al. Análise da Fadiga Muscular Localizada em Atletas e Sedentários Através de Parâmetros de Frequência do Sinal Eletromiográfico. Revista Brasileira de Medicina do Esporte, São Paulo, v. 14, n. 6, p. 509-512, 2008. SCHMIDT, R. T.; TOEWS, J. V. Grip strength as measured by the Jamar dynamometer. Archives of Physical Medicine and Rehabilitation, Chicago, v. 51, n. 6, p. 321–327, 1970. SHECHTMAN, O. et al. Reliability and Validity of the BTE-Primus Grip Tool. Journal of Hand Therapy, Philadelphia, v. 16, p. 36–42, 2003. SIMÃO, R.; MONTEIRO, W. D.; ARAÚJO, C. G. S. Potência muscular máxima na flexão do cotovelo uni e bilateral. Revista Brasileira de Medicina do Esporte, São Paulo, v. 7, n. 5, p. 157-62, 2001. SPIERING, B. A. et al.Resistance Exercise Biology: manipulation of resistance Exercice Programme Variables Determines the Responses of Cellular and Molecular Signalling Pathways. Sports Medicine, Auckland, v. 38, n. 7, p. 527-540, 2008. SUNDSTRUP, E. et al. Muscle activation strategies during strength training with heavy loading vs. Repetitions to failure. The Journal of Strength & Conditioning Research, Lincoln, v. 26, n. 7, p. 1897-1903, 2012. SURFACE ELECTROMYOGRAPHY FOR THE NON-INVASIVE ASSESSMENT OF MUSCLES. Recommendations for sensor locations on individual muscles. Coordenado e gerenciado por Dr. Hermens e Freriks. Enschede. Disponível em: < http://seniam.org/>. Acesso em: 03 jun. 2012. TENAN, M. S. et al. The relationship between blood potassium, blood lactate, and electromyography signals related to fatigue in a progressive cycling exercise test. Journal of Electromyography and Kinesiology, New York, v. 21, n. 1, p. 25–32, 2011. TROSSMAN, P. B.; LI, P. W. The effect of the duration of intertrial rest periods on isometric grip strength performance in young adults. Occupational Therapy Journal of Research, Thorofare, v. 9, n. 6, p. 362–378, 1989. UZUN, S. et al. Evaluation of muscle fatigue of wheelchair basketball players with spinal cord injury using recurrence quantification analysis of surface EMG. European Journal of Applied Physiology, Berlin, v. 112, n. 11, p. 3847-3857, 2012. VELOSO, J. et al. Efeitos do intervalo de recuperação entre as séries sobre a pressão arterial após exercícios resistidos. Arquivo Brasileiro de Cardiologia, São Paulo, v. 94, n. 4, Abr. 2010. WALKER, S. et al. Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. Journal of Electromyography and Kinesiology, New York, v. 22, n. 3, p. 356-62, 2012. WALLSTRÖM, Å; NORDENSKIÖLD, U. Assessing hand grip endurance with repetitive maximal isometric contractions. Journal of Hand Therapy, Philadelphia, v. 14, n. 4, p. 279-285, 2001.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Educação Física
dc.publisher.initials.fl_str_mv UFTM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências da Saúde - ICS::Curso de Graduação em Educação Física
publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFTM
instname:Universidade Federal do Triangulo Mineiro (UFTM)
instacron:UFTM
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
instacron_str UFTM
institution UFTM
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
collection Biblioteca Digital de Teses e Dissertações da UFTM
bitstream.url.fl_str_mv http://bdtd.uftm.edu.br/bitstream/tede/210/1/license.txt
http://bdtd.uftm.edu.br/bitstream/tede/210/2/license_url
http://bdtd.uftm.edu.br/bitstream/tede/210/3/license_text
http://bdtd.uftm.edu.br/bitstream/tede/210/4/license_rdf
http://bdtd.uftm.edu.br/bitstream/tede/210/5/Dissert%20Fernando%20M%20Lima.pdf
http://bdtd.uftm.edu.br/bitstream/tede/210/6/Dissert%20Fernando%20M%20Lima.pdf.txt
http://bdtd.uftm.edu.br/bitstream/tede/210/7/Dissert%20Fernando%20M%20Lima.pdf.jpg
bitstream.checksum.fl_str_mv 1e1650138dd271baea0105346966c99c
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
b2c03e011618323dd7c46305f475161c
bee15d768a338fbe8cd5297a8570067c
cc73c4c239a4c332d642ba1e7c7a9fb2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)
repository.mail.fl_str_mv bdtd@uftm.edu.br||bdtd@uftm.edu.br
_version_ 1854401107836534784