Exportação concluída — 

Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: OLIVEIRA, Thomaz Amaral lattes
Orientador(a): CONDELES, José Fernando lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Triângulo Mineiro
Programa de Pós-Graduação: Programa de Pós-Graduação Interdisciplinar em Biociências Aplicadas
Departamento: Instituto de Ciências Biológicas e Naturais - ICBN
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://bdtd.uftm.edu.br/handle/tede/636
Resumo: Semiconductor materials have several applications in the construction of electronic devices, such as diodes, transistors, capacitors and photoconductors. Several of these devices are currently used in medical and biological applications. Among these interdisciplinary applications, the potential use in the construction of ionizing radiation detectors is emphasized, whether in dosimetry or radiodiagnosis. The HgI2 (Mercuric Iodide) is an inorganic halide material, semiconductor and photoconductor, which presents high efficiency in the absorption of photons of high energy and collection of carriers of electric charges. It is listed as a good candidate in the construction of radiation detecting devices by the direct detection method at room temperature. However, the different methods of obtaining these materials, as well as the variation of the synthesis parameters can influence or modify the structural, optical and electrical properties of these materials. Thus, in this work an alternative assembly of the Spray technique will be analyzed and crystalline HgI2 semiconductor materials will be grown, directed to the use as radiation sensor, accompanied by the study of the structural and electrical properties of this material, as a function of the variation of the synthesis parameters. For this purpose, the material was grown in the form of films by method CVD (Chemical vapor deposition) and Spray technique using N, N-Dimethylformamide as a solvent of the HgI2 powder. The influence of the concentration of HgI2 solution (from 100 g / l to 250 g / l) and the deposition temperature (from 60ºC to 100ºC) on the final properties of the films was investigated. The technique demands low cost of equipment and may eventually become viable solution for the construction of such devices on a large scale. The structural characterizations were performed by Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Energy Dispersion Spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FTIR). The electrical characterizations were performed in the devices produced from the deposited films, by the measurement of electric transport as a function of the electric field. From the obtained results studies, the best conditions of production of these materials were found, directed to the use as radiation detectors. Briefly, the present work presents original results, constituting a new combination of materials and techniques, ranging from the synthesis and deposition of films, including the assembly of the deposition system used, to results of structural and electrical characterization of the films.
id UFTM_da9b2e8b566ff52f28192ee932cd9c56
oai_identifier_str oai:bdtd.uftm.edu.br:tede/636
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
spelling CONDELES, José Fernandohttp://lattes.cnpq.br/3904831299794794http://lattes.cnpq.br/6588083672479003OLIVEIRA, Thomaz Amaral2019-04-23T17:38:39Z2019-03-11OLIVEIRA, Thomaz Amaral. Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação. 2019. 93f. Dissertação (Mestrado em Biociências Aplicadas) - Programa de Pós-Graduação Interdisciplinar em Biociências Aplicadas, Universidade Federal do Triângulo Mineiro, Uberaba, 2019.http://bdtd.uftm.edu.br/handle/tede/636Semiconductor materials have several applications in the construction of electronic devices, such as diodes, transistors, capacitors and photoconductors. Several of these devices are currently used in medical and biological applications. Among these interdisciplinary applications, the potential use in the construction of ionizing radiation detectors is emphasized, whether in dosimetry or radiodiagnosis. The HgI2 (Mercuric Iodide) is an inorganic halide material, semiconductor and photoconductor, which presents high efficiency in the absorption of photons of high energy and collection of carriers of electric charges. It is listed as a good candidate in the construction of radiation detecting devices by the direct detection method at room temperature. However, the different methods of obtaining these materials, as well as the variation of the synthesis parameters can influence or modify the structural, optical and electrical properties of these materials. Thus, in this work an alternative assembly of the Spray technique will be analyzed and crystalline HgI2 semiconductor materials will be grown, directed to the use as radiation sensor, accompanied by the study of the structural and electrical properties of this material, as a function of the variation of the synthesis parameters. For this purpose, the material was grown in the form of films by method CVD (Chemical vapor deposition) and Spray technique using N, N-Dimethylformamide as a solvent of the HgI2 powder. The influence of the concentration of HgI2 solution (from 100 g / l to 250 g / l) and the deposition temperature (from 60ºC to 100ºC) on the final properties of the films was investigated. The technique demands low cost of equipment and may eventually become viable solution for the construction of such devices on a large scale. The structural characterizations were performed by Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Energy Dispersion Spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FTIR). The electrical characterizations were performed in the devices produced from the deposited films, by the measurement of electric transport as a function of the electric field. From the obtained results studies, the best conditions of production of these materials were found, directed to the use as radiation detectors. Briefly, the present work presents original results, constituting a new combination of materials and techniques, ranging from the synthesis and deposition of films, including the assembly of the deposition system used, to results of structural and electrical characterization of the films.Os materiais semicondutores possuem diversas aplicações na construção de dispositivos eletrônicos, tais como diodos, transistores, capacitores e fotocondutores. Vários desses dispositivos são atualmente usados em aplicações interdisciplinares nas áreas médica e biológica. Dentre essas aplicações destaca-se o potencial uso na construção de detectores de radiação ionizante, seja na dosimetria ou radiodiagnóstico. O HgI2 (Iodeto de Mercúrio) é um material haleto inorgânico, semicondutor e fotocondutor, que apresenta alta eficiência na absorção de fótons de alta energia e coleta de portadores de cargas elétricas. É cotado como bom candidato na construção de dispositivos detectores de radiação pelo método direto de detecção à temperatura ambiente. Todavia os diferentes métodos de obtenção desses materiais, bem como a variação dos parâmetros de síntese podem influenciar ou modificar as propriedades estruturais, ópticas e elétricas desses materiais. Assim, neste trabalho será analisada uma montagem alternativa da técnica Spray e serão crescidos materiais semicondutores cristalinos de HgI2, direcionados para o uso como sensor de radiação, acompanhado do estudo das propriedades estruturais e elétricas desse material, em função da variação dos parâmetros de síntese. Para esse propósito o material foi crescido em forma de filmes pelo do método CVD (Deposição química por vapor) e técnica Spray usando N, N-Dimetilformamida como solvente do pó de HgI2. A influência da concentração de solução de HgI2 (de 100 g/l até 250g/l) e da temperatura de deposição (de 60°C até 100°C) sobre as propriedades finais dos filmes foi investigada.A técnica demanda baixo custo de equipamento e pode eventualmente tornar-se solução viável para a construção de dispositivos detectores de radiação em larga escala. As caracterizações estruturais foram realizadas por Microscopia de Força Atômica (AFM), Difração de Raios-X (DRX), Espectroscopia de dispersão de energia (EDS) e Espectroscopia no infravermelho com transformada de Fourier (FTIR). As caracterizações elétricas foram realizadas nos dispositivos produzidos a partir dos filmes depositados, pela medida de transporte elétrico em função do campo elétrico. A partir dos estudos dos resultados obtidos, foram encontradas as melhores condições de produção desses materiais, direcionados ao uso como detectores de radiação. Resumidamente, o presente trabalho apresenta resultados originais, constituindo de uma combinação nova de materiais e técnicas, que contemplam desde a síntese e deposição dos filmes, incluindo a montagem do sistema de deposição usado, até resultados de caracterizações estruturais e elétricas dos filmes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfhttp://bdtd.uftm.edu.br/retrieve/3947/Dissert%20Thomaz%20A%20Oliveira.pdf.jpgporUniversidade Federal do Triângulo MineiroPrograma de Pós-Graduação Interdisciplinar em Biociências AplicadasUFTMBrasilInstituto de Ciências Biológicas e Naturais - ICBN1- CAMACHO, S. A., AOKI, P. H. B., CONSTANTINO, C. J. L., PIRES, A. M.. Sprayed films of europium complexes toward light conversion devices. Journal of Luminescence, v. 153, p. 272–280, 2014. 2- AOKI, P., VOLPATI, D., CABRERA, F. C., TROMBINI, V. L., RIUL JR, A., CONSTANTINO, C. Spray layer-by-layer films based on phospholipid vesicles aiming sensing application via e-tongue system. Materials Science and Engineering C, v. 32, n. 4, p. 862-871, 2012. 3- CALLISTER, W. D. Fundamentos da ciência e engenharia de materiais: uma abordagem integrada. 2. ed. Rio de Janeiro, RJ: LTC, 2005. 4- CALLISTER, W. D. Ciência e Engenharia de Materiais: Uma Introdução. New York: John Wiley & Sons, Inc., 2008. 5- REZENDE, S. M. Materiais e Dispositivos Eletrônicos. 2. Ed. São Paulo, SP: Livraria da Física, 2004. 6- SERVAGENT, N. Semiconductor physics: Fundamentals, 2008. <http://www.optiqueingenieur.org/en/courses/OPI_ang_M05_C02/co/Contenu_02.html> Acesso em: 20 de Novembro de 2018 7- CONDELES, J. F.; MULATO, M. Influence of solution rate and substrate temperature on the properties of lead iodide films deposited by Spray. Journal of Materials Science. v. 46, n. 5, p. 1462-1468, 2011. 8- MARTINS, J. F. T. Desenvolvimento do cristal semicondutor de iodeto de mercúrio para aplicação como detector de radiação. 2011. Dissertação (Mestrado em Tecnologia Nuclear - Aplicações) - Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, 2011. 9- UGUCIONI, J. C. Iodeto de mercúrio produzido por evaporação de solvente: cristais obtidos usando etanol e tetrahidrofurano, e filmes híbridos obtidos usando80 polímeros isolantes. 2009. Tese (Doutorado em Física Aplicada à Medicina e Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2009 10- CONDELES, J. F. Filmes finos de iodeto de chumbo como detector de raios-X para imagens médicas. 2007. Tese (Doutorado em Física Aplicada à Medicina e Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2007. 11- CALDEIRA FILHO, A. M. Fabricação e caracterização de filmes finos de iodeto de chumbo e cristais de iodeto de mercúrio. 2008. Tese (Doutorado em Física Aplicada à Medicina e Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2008. 12- KNOLL, G.F. Radiation Detection and Measurement. 2nd edition. Cap. 5,7,8,11,12. New York: John Wiley & Sons, 1989. 13- BARTHABURU, M. P.; GALAIN, I.; MOMBRÚ, M.; AGUIAR, I.; OLIVEIRA, A.; PEREIRA, H. B.; FORNARO, L. Synthesis and characterization of HgI2 nanoparticles for films nucleation. Journal of Crystal Growth. v. 457, n. 1, p. 234- 238, 2017. 14- CONDELES, J. F.; MULATO, M. Polycrystalline lead iodide films produced by solution evaporation and tested in the mammography X-ray energy range. Journal of Physics and Chemistry of Solids. v. 89, p. 39-44, 2016. 15- CALDEIRA, A. M. F.; UGUCIONI, J. C.; MULATO, M. Red mercuric iodide crystals obtained by isothermal solution evaporation: Characterization for mammographic X-ray imaging detectors. Nuclear Instruments and Methods in Physics Research A. v. 737, n. 11, p. 87-91, 2014. 16- WEN, X. M., XU, P., LUKINS, P. B., OHNO, N. Confocal two-photon spectroscopy of red mercuric iodide. Applied Physics Letters, v. 83, n. 3, p. 425– 427, 2003. 17- UGUCIONI, J. C., FERREIRA, M., FAJARDO, F., MULATO, M. Growth of mercuric iodide crystals. Brazilian Journal of Physics, v. 36 n. 2a, p. 274-277, 2006. 18- YANG, W., NIE, L., LI, D., WANG, Y., ZHOU, J., MA, L., SHI, W. Growth of oriented polycrystalline α-HgI2 films by ultrasonic-wave-assisted physical vapor deposition. Journal of Crystal Growth, v. 324, n. 1, p. 149–153, 2011.81 19- ALEXIEV, D., DYTLEWSKI, N., REINHARD, M. I., MO, L. Characterization of single-crystal mercuric iodide. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v. 517, n. 1, p. 226–229, 2004. 20- OVERDICK, M., BAUMER, C., ENGEL, K. J., FINK, J., HERRMANN, C., KRUGER, H., ZEITLER, G. Status of Direct Conversion Detectors for Medical Imaging with X-Rays. IEEE Transactions on Nuclear Science, v. 56, n. 4, p. 1800–1809, 2009. 21- RAZI, F., ZINATLOO-AJABSHIR, S., SALAVATI-NIASARI, M. Preparation and characterization of HgI2 nanostructures via a new facile route. Materials Letters, v. 193, p. 9–12, 2017. 22- BARTHABURU, M. P., GALAIN, I.MOMBRÚ, M., AGUIAR, I., OLIVERA, A., PEREIRA, H. B., FORNARO, L. Synthesis and characterization of HgI2 nanoparticles for films nucleation. Journal of Crystal Growth, v. 457, p. 234–238, 2017. 23- SCHIEBER, M., HERMON, H., ZUCK, A., VILENSKY, A., MELEKHOV, L., SHATUNOVSKY, R., MEERSON, E., SAADO, Y., LUKACH, M., PINKHASY, E., READY, S.E., STREET, R. A. Thick films of X-ray polycrystalline mercuric iodide detectors. Journal of Crystal Growth, v. 225, n. 2, p. 118–123, 2001. 24- UGUCIONI, J. C. Iodeto de mercúrio (HgI2) para aplicações em detectores de radiação. 2005. Dissertação (Mestrado em Física Aplicada à Medicina e Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2005. 25- CONDELES, J. F., GHILARDINETTO, T., MULATO, M. Lead iodide films as X-ray sensors tested in the mammography energy region. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v. 577, n. 3, p. 724–728, 2007 26- FORNARO, L., CUNA, A., NOGUERA, A., AGUIAR, I., PEREZ, M., MUSSIO, L., GANCHAROV, A. Low dark current (00l) mercuric iodide thick films for Xray direct and digital imagers. In IEEE Symposium Conference Record Nuclear Science. v. 7, p. 4560–4563, 2004. 27- Chen, K.T. et. Al. Nuclear Instruments and Methods in Physics Research A. 380, 53, 1999.82 28- CONDELES, J. F.; MULATO, M. Crystalline texture and mammography energy range detection studies of pyrolysed lead iodide films: Effects of solution concentration. Materials Chemistry and Physics. v. 166, p. 190-195, 2015. 29- HOSTETTLER, M., BIRKEDAL, H., & SCHWARZENBACH, D. Polymorphs and Structures of Mercuric Iodide. CHIMIA International Journal for Chemistry (Vol. 55), 2001. 30- JAMES, T. W., & MILSTEIN, F. Plastic deformation and dislocation structure of single crystal mercuric iodide. Journal of Materials Science, 18(11), 3249–3258, 1983. 31- POWELL, C. F.; OXLEY, J. H. and BLOCHER Jr, J. M. Vapor Deposition. New York: John Wiley and Sons, 1967 32- WESTWOOD, W. D. Sputter Deposition; AVS Education Committee book series, v. 2. New York: Education Committee, 2003. 33- MATTOX, D. M. Handbook of Physical Vapor Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control. New Jersey: Noyes Publications, 1998. 34- GENG, H. Semiconductor Manufacturing Handbook. New York: McGraw-Hill, 2004. 35- HELMERSSON, U.; LATTEMANN, M.; BOHLMARK, J.; EHIASARIAN, A. P.; GUDMUNDSSON, J. T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, v. 513(1), p. 1–24, 2006. 36- UHLENBRUCK, S.; NEDELEC, R.; SEBOLD, D.; BUCHKREMER, H. P.; STOEVER, D.Electrode and Electrolyte Layers for Solid Oxide Fuel Cells Applied by Physical Vapor Deposition (PVD). ECS Transactions,v. 35(1), p. 2275-2282, 2011. 37- OH K., YUN M., KIM M., JANG K., NAM S. HgI2 Flat Panel Radiation Detectors for Medical Imaging Acquisition. In: Dössel O., Schlegel W.C. (eds) World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings, vol 25/2, p. 590–593, 2009. 38- ZENTAI, G., PARTAIN, L. D., PAVLYUCHKOVA, R., PROANO, C., VIRSHUP, G. F., MELEKHOV, L., ZUCK, A., BREEN, B. N., DAGAN, O., VILENSKY, A., SCHIEBER, M., GILBOA, H., BENNET. P., SHAH, K. S., DMITRIYEV, Y. N., THOMAS, J. A., YAFFE, M. J., HUNTER, D. M. Mercuric83 iodide and lead iodide x-ray detectors for radiographic and fluoroscopic medical imaging. Physics of Medical Imaging, v. 5030, 2003. 39- CARLSSON, J.-O., &MARTIN, P. M. Chapter 7 - Chemical Vapor Deposition. In P. M. B. T.-H. of D. T. for F. and C. (Third E. Martin (Org.). Boston: William Andrew Publishing, p. 314-363, 2010. 40- LIFSHITZ, E., YASSEN, M., BYKOV, L., DAG, I., CHAIM, R. Continuous photoluminescence, time resolved photoluminescence and optically detected magnetic resonance measurements of PbI2 nanometer-sized particles, embedded in SiO2 films. Journal of Luminescence, v. 70(1), p. 421–434, 1996. 41- BHAGAT, S.D., KIM, Y., AHM, Y.Room temperature synthesis of water repellent silica coatings by the dip coat technique. Applied Surface Science, v. 253(4), p. 2217–2221, 2006. 42- CHENG, Z., SHI, B., GAO, B., PANG, M., WANG S., HAN, Y., LIN, J.Spin‐ Coating Preparation of Highly Ordered Photoluminescent Films of Layered PbI2‐ Aminoalkyloxysilane Perovskites. Eur. J. Inorg. Chem., p. 218-223, 2005 43- LIANG, K., MITZI, D.B., PRIKAS, M.T.Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chemistry of Materials, v. 10(1), p. 403–411, 1998. 44- CONDELES, J.F., MARTINS T.M., DOS SANTOS, T.C., BRUNELLO, C.A., ROSOLEN, J. M. e MULATO, M. Jornal of Non-Crystalline Solids, v. 81, p. 338- 340, 2004. 45- HAO, J., STUDENIKIN, S. A., & COCIVERA, M. Transient photoconductivity properties of tungsten oxide thin films prepared by Spray. Journal of Applied Physics, v. 90(10), p. 5064–5069, 2001 46- THUN, R. E. Structure of Thin Films. In: Physiscs of Thin Films, Vol. 1, ed. G. Hass. San Diego: Academic, 1963. 47- CONDELES, J.F. Filmes finos de iodeto de chumbo (PbI2) produzidos por Spray. 2003. Dissertação (Mestrado em Física Aplicada à Medicina e Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2003. 48- C. S. BARRETT, T. B. MASSALSKI. Structure of Metals. 3rd revised edition. Pergamon Press Oxford, New York, Toronto, Sydney, Paris Frankfurt, 1981 49- WHISTON, C., & Prichard, F.E. X-ray methods. United States: John Wiley and Sons Inc, 1987.84 50- PAVIA, D. L., LAMPMAN, G. M., KRIZ, G. S., & VYVYAN, J. R. Introdução à espectroscopia. CENGAGE. 4 ed, 2010 51- HALLIDAY, R. W. Fundamentos de Física. Vol. 3. 9 ed. Editora LTC, 2009.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDetectores.Raios-X.Filmes Finos.Semicondutores.Detectors.X-Rays.Thin Films.Semiconductors.MateriaisCrescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiaçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTMLICENSElicense.txtlicense.txttext/plain; charset=utf-81976http://bdtd.uftm.edu.br/bitstream/tede/636/1/license.txt1e1650138dd271baea0105346966c99cMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://bdtd.uftm.edu.br/bitstream/tede/636/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://bdtd.uftm.edu.br/bitstream/tede/636/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://bdtd.uftm.edu.br/bitstream/tede/636/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissert Thomaz A Oliveira.pdfDissert Thomaz A Oliveira.pdfDissert Thomaz A Oliveiraapplication/pdf4173481http://bdtd.uftm.edu.br/bitstream/tede/636/5/Dissert%20Thomaz%20A%20Oliveira.pdf5bda0e11fa338aff327c3372fbbd95c3MD55TEXTDissert Thomaz A Oliveira.pdf.txtDissert Thomaz A Oliveira.pdf.txtExtracted Texttext/plain132592http://bdtd.uftm.edu.br/bitstream/tede/636/6/Dissert%20Thomaz%20A%20Oliveira.pdf.txt37f212f611a5903beb66148f71480fd1MD56THUMBNAILDissert Thomaz A Oliveira.pdf.jpgDissert Thomaz A Oliveira.pdf.jpgGenerated Thumbnailimage/jpeg2619http://bdtd.uftm.edu.br/bitstream/tede/636/7/Dissert%20Thomaz%20A%20Oliveira.pdf.jpgb9932947057ba375ce8d2131a955a5f0MD57tede/6362019-04-24 01:00:21.819oai:bdtd.uftm.edu.br:tede/636TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIApGZWRlcmFsIGRvIFRyacOibmd1bG8gTWluZWlybyAoVUZUTSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRlRNIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gCnBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBVRlRNIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGVE0gCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZUTSwgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZUTSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2019-04-24T04:00:21Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
dc.title.por.fl_str_mv Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação
title Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação
spellingShingle Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação
OLIVEIRA, Thomaz Amaral
Detectores.
Raios-X.
Filmes Finos.
Semicondutores.
Detectors.
X-Rays.
Thin Films.
Semiconductors.
Materiais
title_short Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação
title_full Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação
title_fullStr Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação
title_full_unstemmed Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação
title_sort Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação
author OLIVEIRA, Thomaz Amaral
author_facet OLIVEIRA, Thomaz Amaral
author_role author
dc.contributor.advisor1.fl_str_mv CONDELES, José Fernando
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3904831299794794
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6588083672479003
dc.contributor.author.fl_str_mv OLIVEIRA, Thomaz Amaral
contributor_str_mv CONDELES, José Fernando
dc.subject.por.fl_str_mv Detectores.
Raios-X.
Filmes Finos.
Semicondutores.
topic Detectores.
Raios-X.
Filmes Finos.
Semicondutores.
Detectors.
X-Rays.
Thin Films.
Semiconductors.
Materiais
dc.subject.eng.fl_str_mv Detectors.
X-Rays.
Thin Films.
Semiconductors.
dc.subject.cnpq.fl_str_mv Materiais
description Semiconductor materials have several applications in the construction of electronic devices, such as diodes, transistors, capacitors and photoconductors. Several of these devices are currently used in medical and biological applications. Among these interdisciplinary applications, the potential use in the construction of ionizing radiation detectors is emphasized, whether in dosimetry or radiodiagnosis. The HgI2 (Mercuric Iodide) is an inorganic halide material, semiconductor and photoconductor, which presents high efficiency in the absorption of photons of high energy and collection of carriers of electric charges. It is listed as a good candidate in the construction of radiation detecting devices by the direct detection method at room temperature. However, the different methods of obtaining these materials, as well as the variation of the synthesis parameters can influence or modify the structural, optical and electrical properties of these materials. Thus, in this work an alternative assembly of the Spray technique will be analyzed and crystalline HgI2 semiconductor materials will be grown, directed to the use as radiation sensor, accompanied by the study of the structural and electrical properties of this material, as a function of the variation of the synthesis parameters. For this purpose, the material was grown in the form of films by method CVD (Chemical vapor deposition) and Spray technique using N, N-Dimethylformamide as a solvent of the HgI2 powder. The influence of the concentration of HgI2 solution (from 100 g / l to 250 g / l) and the deposition temperature (from 60ºC to 100ºC) on the final properties of the films was investigated. The technique demands low cost of equipment and may eventually become viable solution for the construction of such devices on a large scale. The structural characterizations were performed by Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Energy Dispersion Spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FTIR). The electrical characterizations were performed in the devices produced from the deposited films, by the measurement of electric transport as a function of the electric field. From the obtained results studies, the best conditions of production of these materials were found, directed to the use as radiation detectors. Briefly, the present work presents original results, constituting a new combination of materials and techniques, ranging from the synthesis and deposition of films, including the assembly of the deposition system used, to results of structural and electrical characterization of the films.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-04-23T17:38:39Z
dc.date.issued.fl_str_mv 2019-03-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, Thomaz Amaral. Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação. 2019. 93f. Dissertação (Mestrado em Biociências Aplicadas) - Programa de Pós-Graduação Interdisciplinar em Biociências Aplicadas, Universidade Federal do Triângulo Mineiro, Uberaba, 2019.
dc.identifier.uri.fl_str_mv http://bdtd.uftm.edu.br/handle/tede/636
identifier_str_mv OLIVEIRA, Thomaz Amaral. Crescimento de materiais semicondutores cristalinos de iodeto de mercúrio para aplicações como detectores de radiação. 2019. 93f. Dissertação (Mestrado em Biociências Aplicadas) - Programa de Pós-Graduação Interdisciplinar em Biociências Aplicadas, Universidade Federal do Triângulo Mineiro, Uberaba, 2019.
url http://bdtd.uftm.edu.br/handle/tede/636
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv 1- CAMACHO, S. A., AOKI, P. H. B., CONSTANTINO, C. J. L., PIRES, A. M.. Sprayed films of europium complexes toward light conversion devices. Journal of Luminescence, v. 153, p. 272–280, 2014. 2- AOKI, P., VOLPATI, D., CABRERA, F. C., TROMBINI, V. L., RIUL JR, A., CONSTANTINO, C. Spray layer-by-layer films based on phospholipid vesicles aiming sensing application via e-tongue system. Materials Science and Engineering C, v. 32, n. 4, p. 862-871, 2012. 3- CALLISTER, W. D. Fundamentos da ciência e engenharia de materiais: uma abordagem integrada. 2. ed. Rio de Janeiro, RJ: LTC, 2005. 4- CALLISTER, W. D. Ciência e Engenharia de Materiais: Uma Introdução. New York: John Wiley & Sons, Inc., 2008. 5- REZENDE, S. M. Materiais e Dispositivos Eletrônicos. 2. Ed. São Paulo, SP: Livraria da Física, 2004. 6- SERVAGENT, N. Semiconductor physics: Fundamentals, 2008. <http://www.optiqueingenieur.org/en/courses/OPI_ang_M05_C02/co/Contenu_02.html> Acesso em: 20 de Novembro de 2018 7- CONDELES, J. F.; MULATO, M. Influence of solution rate and substrate temperature on the properties of lead iodide films deposited by Spray. Journal of Materials Science. v. 46, n. 5, p. 1462-1468, 2011. 8- MARTINS, J. F. T. Desenvolvimento do cristal semicondutor de iodeto de mercúrio para aplicação como detector de radiação. 2011. Dissertação (Mestrado em Tecnologia Nuclear - Aplicações) - Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, 2011. 9- UGUCIONI, J. C. Iodeto de mercúrio produzido por evaporação de solvente: cristais obtidos usando etanol e tetrahidrofurano, e filmes híbridos obtidos usando80 polímeros isolantes. 2009. Tese (Doutorado em Física Aplicada à Medicina e Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2009 10- CONDELES, J. F. Filmes finos de iodeto de chumbo como detector de raios-X para imagens médicas. 2007. Tese (Doutorado em Física Aplicada à Medicina e Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2007. 11- CALDEIRA FILHO, A. M. Fabricação e caracterização de filmes finos de iodeto de chumbo e cristais de iodeto de mercúrio. 2008. Tese (Doutorado em Física Aplicada à Medicina e Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2008. 12- KNOLL, G.F. Radiation Detection and Measurement. 2nd edition. Cap. 5,7,8,11,12. New York: John Wiley & Sons, 1989. 13- BARTHABURU, M. P.; GALAIN, I.; MOMBRÚ, M.; AGUIAR, I.; OLIVEIRA, A.; PEREIRA, H. B.; FORNARO, L. Synthesis and characterization of HgI2 nanoparticles for films nucleation. Journal of Crystal Growth. v. 457, n. 1, p. 234- 238, 2017. 14- CONDELES, J. F.; MULATO, M. Polycrystalline lead iodide films produced by solution evaporation and tested in the mammography X-ray energy range. Journal of Physics and Chemistry of Solids. v. 89, p. 39-44, 2016. 15- CALDEIRA, A. M. F.; UGUCIONI, J. C.; MULATO, M. Red mercuric iodide crystals obtained by isothermal solution evaporation: Characterization for mammographic X-ray imaging detectors. Nuclear Instruments and Methods in Physics Research A. v. 737, n. 11, p. 87-91, 2014. 16- WEN, X. M., XU, P., LUKINS, P. B., OHNO, N. Confocal two-photon spectroscopy of red mercuric iodide. Applied Physics Letters, v. 83, n. 3, p. 425– 427, 2003. 17- UGUCIONI, J. C., FERREIRA, M., FAJARDO, F., MULATO, M. Growth of mercuric iodide crystals. Brazilian Journal of Physics, v. 36 n. 2a, p. 274-277, 2006. 18- YANG, W., NIE, L., LI, D., WANG, Y., ZHOU, J., MA, L., SHI, W. Growth of oriented polycrystalline α-HgI2 films by ultrasonic-wave-assisted physical vapor deposition. Journal of Crystal Growth, v. 324, n. 1, p. 149–153, 2011.81 19- ALEXIEV, D., DYTLEWSKI, N., REINHARD, M. I., MO, L. Characterization of single-crystal mercuric iodide. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v. 517, n. 1, p. 226–229, 2004. 20- OVERDICK, M., BAUMER, C., ENGEL, K. J., FINK, J., HERRMANN, C., KRUGER, H., ZEITLER, G. Status of Direct Conversion Detectors for Medical Imaging with X-Rays. IEEE Transactions on Nuclear Science, v. 56, n. 4, p. 1800–1809, 2009. 21- RAZI, F., ZINATLOO-AJABSHIR, S., SALAVATI-NIASARI, M. Preparation and characterization of HgI2 nanostructures via a new facile route. Materials Letters, v. 193, p. 9–12, 2017. 22- BARTHABURU, M. P., GALAIN, I.MOMBRÚ, M., AGUIAR, I., OLIVERA, A., PEREIRA, H. B., FORNARO, L. Synthesis and characterization of HgI2 nanoparticles for films nucleation. Journal of Crystal Growth, v. 457, p. 234–238, 2017. 23- SCHIEBER, M., HERMON, H., ZUCK, A., VILENSKY, A., MELEKHOV, L., SHATUNOVSKY, R., MEERSON, E., SAADO, Y., LUKACH, M., PINKHASY, E., READY, S.E., STREET, R. A. Thick films of X-ray polycrystalline mercuric iodide detectors. Journal of Crystal Growth, v. 225, n. 2, p. 118–123, 2001. 24- UGUCIONI, J. C. Iodeto de mercúrio (HgI2) para aplicações em detectores de radiação. 2005. Dissertação (Mestrado em Física Aplicada à Medicina e Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2005. 25- CONDELES, J. F., GHILARDINETTO, T., MULATO, M. Lead iodide films as X-ray sensors tested in the mammography energy region. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v. 577, n. 3, p. 724–728, 2007 26- FORNARO, L., CUNA, A., NOGUERA, A., AGUIAR, I., PEREZ, M., MUSSIO, L., GANCHAROV, A. Low dark current (00l) mercuric iodide thick films for Xray direct and digital imagers. In IEEE Symposium Conference Record Nuclear Science. v. 7, p. 4560–4563, 2004. 27- Chen, K.T. et. Al. Nuclear Instruments and Methods in Physics Research A. 380, 53, 1999.82 28- CONDELES, J. F.; MULATO, M. Crystalline texture and mammography energy range detection studies of pyrolysed lead iodide films: Effects of solution concentration. Materials Chemistry and Physics. v. 166, p. 190-195, 2015. 29- HOSTETTLER, M., BIRKEDAL, H., & SCHWARZENBACH, D. Polymorphs and Structures of Mercuric Iodide. CHIMIA International Journal for Chemistry (Vol. 55), 2001. 30- JAMES, T. W., & MILSTEIN, F. Plastic deformation and dislocation structure of single crystal mercuric iodide. Journal of Materials Science, 18(11), 3249–3258, 1983. 31- POWELL, C. F.; OXLEY, J. H. and BLOCHER Jr, J. M. Vapor Deposition. New York: John Wiley and Sons, 1967 32- WESTWOOD, W. D. Sputter Deposition; AVS Education Committee book series, v. 2. New York: Education Committee, 2003. 33- MATTOX, D. M. Handbook of Physical Vapor Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control. New Jersey: Noyes Publications, 1998. 34- GENG, H. Semiconductor Manufacturing Handbook. New York: McGraw-Hill, 2004. 35- HELMERSSON, U.; LATTEMANN, M.; BOHLMARK, J.; EHIASARIAN, A. P.; GUDMUNDSSON, J. T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, v. 513(1), p. 1–24, 2006. 36- UHLENBRUCK, S.; NEDELEC, R.; SEBOLD, D.; BUCHKREMER, H. P.; STOEVER, D.Electrode and Electrolyte Layers for Solid Oxide Fuel Cells Applied by Physical Vapor Deposition (PVD). ECS Transactions,v. 35(1), p. 2275-2282, 2011. 37- OH K., YUN M., KIM M., JANG K., NAM S. HgI2 Flat Panel Radiation Detectors for Medical Imaging Acquisition. In: Dössel O., Schlegel W.C. (eds) World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings, vol 25/2, p. 590–593, 2009. 38- ZENTAI, G., PARTAIN, L. D., PAVLYUCHKOVA, R., PROANO, C., VIRSHUP, G. F., MELEKHOV, L., ZUCK, A., BREEN, B. N., DAGAN, O., VILENSKY, A., SCHIEBER, M., GILBOA, H., BENNET. P., SHAH, K. S., DMITRIYEV, Y. N., THOMAS, J. A., YAFFE, M. J., HUNTER, D. M. Mercuric83 iodide and lead iodide x-ray detectors for radiographic and fluoroscopic medical imaging. Physics of Medical Imaging, v. 5030, 2003. 39- CARLSSON, J.-O., &MARTIN, P. M. Chapter 7 - Chemical Vapor Deposition. In P. M. B. T.-H. of D. T. for F. and C. (Third E. Martin (Org.). Boston: William Andrew Publishing, p. 314-363, 2010. 40- LIFSHITZ, E., YASSEN, M., BYKOV, L., DAG, I., CHAIM, R. Continuous photoluminescence, time resolved photoluminescence and optically detected magnetic resonance measurements of PbI2 nanometer-sized particles, embedded in SiO2 films. Journal of Luminescence, v. 70(1), p. 421–434, 1996. 41- BHAGAT, S.D., KIM, Y., AHM, Y.Room temperature synthesis of water repellent silica coatings by the dip coat technique. Applied Surface Science, v. 253(4), p. 2217–2221, 2006. 42- CHENG, Z., SHI, B., GAO, B., PANG, M., WANG S., HAN, Y., LIN, J.Spin‐ Coating Preparation of Highly Ordered Photoluminescent Films of Layered PbI2‐ Aminoalkyloxysilane Perovskites. Eur. J. Inorg. Chem., p. 218-223, 2005 43- LIANG, K., MITZI, D.B., PRIKAS, M.T.Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chemistry of Materials, v. 10(1), p. 403–411, 1998. 44- CONDELES, J.F., MARTINS T.M., DOS SANTOS, T.C., BRUNELLO, C.A., ROSOLEN, J. M. e MULATO, M. Jornal of Non-Crystalline Solids, v. 81, p. 338- 340, 2004. 45- HAO, J., STUDENIKIN, S. A., & COCIVERA, M. Transient photoconductivity properties of tungsten oxide thin films prepared by Spray. Journal of Applied Physics, v. 90(10), p. 5064–5069, 2001 46- THUN, R. E. Structure of Thin Films. In: Physiscs of Thin Films, Vol. 1, ed. G. Hass. San Diego: Academic, 1963. 47- CONDELES, J.F. Filmes finos de iodeto de chumbo (PbI2) produzidos por Spray. 2003. Dissertação (Mestrado em Física Aplicada à Medicina e Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2003. 48- C. S. BARRETT, T. B. MASSALSKI. Structure of Metals. 3rd revised edition. Pergamon Press Oxford, New York, Toronto, Sydney, Paris Frankfurt, 1981 49- WHISTON, C., & Prichard, F.E. X-ray methods. United States: John Wiley and Sons Inc, 1987.84 50- PAVIA, D. L., LAMPMAN, G. M., KRIZ, G. S., & VYVYAN, J. R. Introdução à espectroscopia. CENGAGE. 4 ed, 2010 51- HALLIDAY, R. W. Fundamentos de Física. Vol. 3. 9 ed. Editora LTC, 2009.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação Interdisciplinar em Biociências Aplicadas
dc.publisher.initials.fl_str_mv UFTM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Biológicas e Naturais - ICBN
publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFTM
instname:Universidade Federal do Triangulo Mineiro (UFTM)
instacron:UFTM
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
instacron_str UFTM
institution UFTM
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
collection Biblioteca Digital de Teses e Dissertações da UFTM
bitstream.url.fl_str_mv http://bdtd.uftm.edu.br/bitstream/tede/636/1/license.txt
http://bdtd.uftm.edu.br/bitstream/tede/636/2/license_url
http://bdtd.uftm.edu.br/bitstream/tede/636/3/license_text
http://bdtd.uftm.edu.br/bitstream/tede/636/4/license_rdf
http://bdtd.uftm.edu.br/bitstream/tede/636/5/Dissert%20Thomaz%20A%20Oliveira.pdf
http://bdtd.uftm.edu.br/bitstream/tede/636/6/Dissert%20Thomaz%20A%20Oliveira.pdf.txt
http://bdtd.uftm.edu.br/bitstream/tede/636/7/Dissert%20Thomaz%20A%20Oliveira.pdf.jpg
bitstream.checksum.fl_str_mv 1e1650138dd271baea0105346966c99c
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
5bda0e11fa338aff327c3372fbbd95c3
37f212f611a5903beb66148f71480fd1
b9932947057ba375ce8d2131a955a5f0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)
repository.mail.fl_str_mv bdtd@uftm.edu.br||bdtd@uftm.edu.br
_version_ 1854401109821489152