Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Morais, Bruno Well Dantas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/31628
http://doi.org/10.14393/ufu.di.2021.29
Resumo: This work consists of an investigation about the application of parallel computing techniques to bio-inspired models based on cellular automata (CA) and genetic algorithms (GA) in the context of their application to cryptography and the task scheduling problem, respectively. The Hybrid Cellular Automata (HCA) model features two algorithms that perform forward and backward evolution, where the states of a grid of cells are iteratively updated according to transition rules and nearby cells. This model is applied to cryptography, which aims for secure communication by encoding messages to prevent unintended access to the information. The Multipopulation Genetic Algorithm (MPGA) is a variation of GA intended for the application of parallel computing. This model consists of the evolution of multiple sets of solutions by means of stochastic operators for search and optimization applications. This algorithm is applied to the task scheduling problem, a computationally intractable problem that consists of minimizing the execution time of interdependent tasks assigned to a set of processors. Sequential and parallel implementations of these models were developed with the Python language, with implementations aimed to multicore processors (CPU) and graphics processing units (GPU) in the case of the HCA, and distributed memory and shared memory approaches for multicore processors in the case of the MPGA. With these implementations, experiments were conducted to quantify the performance gains of each parallel approach in comparison to the sequential implementations. The performance of the HCA algorithms was benefited by the parallel execution on GPU, while the parallel CPU implementations resulted in the loss of performance due to overhead. The experiments involving the parameterization of MPGA demonstrated a trade-off between the quality of solutions and execution time. In this case, a multiobjective analysis was employed, elucidating highly efficient configurations considering both of these performance metrics.
id UFU_081360100841501eb24156231f68f4c2
oai_identifier_str oai:repositorio.ufu.br:123456789/31628
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridosParallel and bio-inspired computing: multipopulation genetic algorithms and hybrid cellular automataAutômato celularAlgoritmo genéticoCriptografiaEscalonamento de tarefasComputação paralelaCellular automataGenetic algorithmsCryptographyTask schedulingParallel computingComputaçãoCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOComputaçãoThis work consists of an investigation about the application of parallel computing techniques to bio-inspired models based on cellular automata (CA) and genetic algorithms (GA) in the context of their application to cryptography and the task scheduling problem, respectively. The Hybrid Cellular Automata (HCA) model features two algorithms that perform forward and backward evolution, where the states of a grid of cells are iteratively updated according to transition rules and nearby cells. This model is applied to cryptography, which aims for secure communication by encoding messages to prevent unintended access to the information. The Multipopulation Genetic Algorithm (MPGA) is a variation of GA intended for the application of parallel computing. This model consists of the evolution of multiple sets of solutions by means of stochastic operators for search and optimization applications. This algorithm is applied to the task scheduling problem, a computationally intractable problem that consists of minimizing the execution time of interdependent tasks assigned to a set of processors. Sequential and parallel implementations of these models were developed with the Python language, with implementations aimed to multicore processors (CPU) and graphics processing units (GPU) in the case of the HCA, and distributed memory and shared memory approaches for multicore processors in the case of the MPGA. With these implementations, experiments were conducted to quantify the performance gains of each parallel approach in comparison to the sequential implementations. The performance of the HCA algorithms was benefited by the parallel execution on GPU, while the parallel CPU implementations resulted in the loss of performance due to overhead. The experiments involving the parameterization of MPGA demonstrated a trade-off between the quality of solutions and execution time. In this case, a multiobjective analysis was employed, elucidating highly efficient configurations considering both of these performance metrics.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)This work consists of an investigation about the application of parallel computing techniques to bio-inspired models based on cellular automata (CA) and genetic algorithms (GA) in the context of their application to cryptography and the task scheduling problem, respectively. The Hybrid Cellular Automata (HCA) model features two algorithms that perform forward and backward evolution, where the states of a grid of cells are iteratively updated according to transition rules and nearby cells. This model is applied to cryptography, which aims for secure communication by encoding messages to prevent unintended access to the information. The Multipopulation Genetic Algorithm (MPGA) is a variation of GA intended for the application of parallel computing. This model consists of the evolution of multiple sets of solutions by means of stochastic operators for search and optimization applications. This algorithm is applied to the task scheduling problem, a computationally intractable problem that consists of minimizing the execution time of interdependent tasks assigned to a set of processors. Sequential and parallel implementations of these models were developed with the Python language, with implementations aimed to multicore processors (CPU) and graphics processing units (GPU) in the case of the HCA, and distributed memory and shared memory approaches for multicore processors in the case of the MPGA. With these implementations, experiments were conducted to quantify the performance gains of each parallel approach in comparison to the sequential implementations. The performance of the HCA algorithms was benefited by the parallel execution on GPU, while the parallel CPU implementations resulted in the loss of performance due to overhead. The experiments involving the parameterization of MPGA demonstrated a trade-off between the quality of solutions and execution time. In this case, a multiobjective analysis was employed, elucidating highly efficient configurations considering both of these performance metrics.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Ciência da ComputaçãoOliveira, Gina Maira Barbosa dehttp://lattes.cnpq.br/7119433066704111Miani, Rodrigo Sancheshttp://lattes.cnpq.br/2992074747740327Delbem, Alexandre Cláudio Botazzohttp://lattes.cnpq.br/1201079310363734Morais, Bruno Well Dantas2021-04-26T17:26:20Z2021-04-26T17:26:20Z2020-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMORAIS, Bruno Well Dantas. Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos. 2020. 138 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.di.2021.29.https://repositorio.ufu.br/handle/123456789/31628http://doi.org/10.14393/ufu.di.2021.29enghttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2021-04-27T06:18:52Zoai:repositorio.ufu.br:123456789/31628Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2021-04-27T06:18:52Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos
Parallel and bio-inspired computing: multipopulation genetic algorithms and hybrid cellular automata
title Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos
spellingShingle Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos
Morais, Bruno Well Dantas
Autômato celular
Algoritmo genético
Criptografia
Escalonamento de tarefas
Computação paralela
Cellular automata
Genetic algorithms
Cryptography
Task scheduling
Parallel computing
Computação
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Computação
title_short Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos
title_full Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos
title_fullStr Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos
title_full_unstemmed Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos
title_sort Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos
author Morais, Bruno Well Dantas
author_facet Morais, Bruno Well Dantas
author_role author
dc.contributor.none.fl_str_mv Oliveira, Gina Maira Barbosa de
http://lattes.cnpq.br/7119433066704111
Miani, Rodrigo Sanches
http://lattes.cnpq.br/2992074747740327
Delbem, Alexandre Cláudio Botazzo
http://lattes.cnpq.br/1201079310363734
dc.contributor.author.fl_str_mv Morais, Bruno Well Dantas
dc.subject.por.fl_str_mv Autômato celular
Algoritmo genético
Criptografia
Escalonamento de tarefas
Computação paralela
Cellular automata
Genetic algorithms
Cryptography
Task scheduling
Parallel computing
Computação
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Computação
topic Autômato celular
Algoritmo genético
Criptografia
Escalonamento de tarefas
Computação paralela
Cellular automata
Genetic algorithms
Cryptography
Task scheduling
Parallel computing
Computação
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Computação
description This work consists of an investigation about the application of parallel computing techniques to bio-inspired models based on cellular automata (CA) and genetic algorithms (GA) in the context of their application to cryptography and the task scheduling problem, respectively. The Hybrid Cellular Automata (HCA) model features two algorithms that perform forward and backward evolution, where the states of a grid of cells are iteratively updated according to transition rules and nearby cells. This model is applied to cryptography, which aims for secure communication by encoding messages to prevent unintended access to the information. The Multipopulation Genetic Algorithm (MPGA) is a variation of GA intended for the application of parallel computing. This model consists of the evolution of multiple sets of solutions by means of stochastic operators for search and optimization applications. This algorithm is applied to the task scheduling problem, a computationally intractable problem that consists of minimizing the execution time of interdependent tasks assigned to a set of processors. Sequential and parallel implementations of these models were developed with the Python language, with implementations aimed to multicore processors (CPU) and graphics processing units (GPU) in the case of the HCA, and distributed memory and shared memory approaches for multicore processors in the case of the MPGA. With these implementations, experiments were conducted to quantify the performance gains of each parallel approach in comparison to the sequential implementations. The performance of the HCA algorithms was benefited by the parallel execution on GPU, while the parallel CPU implementations resulted in the loss of performance due to overhead. The experiments involving the parameterization of MPGA demonstrated a trade-off between the quality of solutions and execution time. In this case, a multiobjective analysis was employed, elucidating highly efficient configurations considering both of these performance metrics.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-14
2021-04-26T17:26:20Z
2021-04-26T17:26:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MORAIS, Bruno Well Dantas. Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos. 2020. 138 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.di.2021.29.
https://repositorio.ufu.br/handle/123456789/31628
http://doi.org/10.14393/ufu.di.2021.29
identifier_str_mv MORAIS, Bruno Well Dantas. Computação paralela e bio-inspirada: algoritmos genéticos multipopulação e autômatos celulares híbridos. 2020. 138 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.di.2021.29.
url https://repositorio.ufu.br/handle/123456789/31628
http://doi.org/10.14393/ufu.di.2021.29
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Ciência da Computação
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1827843513468846080