Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Silva, Gustavo Diniz lattes
Orientador(a): Martins, George Balster lattes
Banca de defesa: Pinto, Diogo de Oliveira Soares lattes, Ferreira, Gerson J. lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Uberlândia
Programa de Pós-Graduação: Programa de Pós-graduação em Física
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufu.br/handle/123456789/31835
http://doi.org/10.14393/ufu.di.2020.3609
Resumo: Nesse trabalho, estudandos a física de uma impureza magnética acoplada a várias bandas de condução (banda metálica, pseud-gap e semicondutora). Porém, o foco principal do trabalho é explicar o comportamento de um sistema constituido por uma impureza quântica, fortemente acoplada a um semicondutor (com gap 2 ) e fracamente acoplada a um contato metálico. Usando Rernoamlização de Grupo Numérica (NRG) e poor man’s scaling no Modelo de Anderson, mostramos que para esse sistema (impureza+metal+semicondutor), exibe um estágio repetição do efeito Kondo à medida que diminui gradualmente a temperatura. A análise do correspondente Modelo de Anderson de uma única impureza (SIAM), através das propriedades termodinâmicas e espectrais da impureza, mostra que o estágio de repetição é caracterizado por uma segunda sequência de pontos fixos SIAM, Orbital Livre (FO) ! Momento Local (LM) ! acoplamento forte (SC). No estágio de temperatura mais alta, o ponto fixo SC (com uma temperatura Kondo TK1) é instável, enquanto o segundo Kondo tem uma temperatura Kondo TK2 muito mais baixa, associada a um ponto fixo SC estável . Os resultados sugerem claramente que a repetição está associada a um SIAM efetivo, com um pico de Hubbard Ueff, cujo valor é claramente identificável na densidade de estados local da impureza.Esse SIAM efetivo para baixa temperatura, que chamamos de repetição do SIAM, se comporta como uma réplica do SIAM de alta temperatura. O fluxo RG do segundo estágio (obtido através do NRG), cujo ponto fixo FO emerge por T < TK1, assume o controle assim que o RG flui para longe do ponto fixo SC instável do primeiro estágio. A imagem intuitiva que emerge de nossa análise é que o primeiro estado de Kondo se desenvolve por meio da blindagem da impureza por elétrons semicondutores, enquanto o segundo estágio envolve a blindagem por elétrons metálicos, uma vez que os elétrons semicondutores estão fora do alcance das excitações térmicas (T < ) e apenas os elétrons metálicos, dentro do gap estão disponíveis para a blindagem da impureza. Para todos os intervalos de parâmetros analisados, através do NRG encontramos TK2 TK1. Por último, nós analizamos um sistema hibrido formado por uma impureza ‘imprensada’ entre uma nanofita de grafeno armchair (AGNR) e um microscópio de tunelamento de varredura (STM). Nesse sistema, a energia do gap (2 ) pode ser externamente alterada por um campo elétrinco induzido por interação spin-orbita Rashba. Analizamos esse sistema para parâmetros realísticos, usando NRG, e concluimos que a repetição do SIAM, e o segundo estágio Kondo, pode ser investigado experimentalmente.
id UFU_1677aba5ea3ceb032f12cf270f196f0d
oai_identifier_str oai:repositorio.ufu.br:123456789/31835
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling 2021-05-31T16:49:26Z2021-05-31T16:49:26Z2020-02-20SILVA, Gustavo Diniz. Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact. 2020. 71 f. Dissertação (Mestrado em Física) – Universidade federal de Uberlândia. Uberlândia. 2020. Disponível em: http://doi.org/10.14393/ufu.di.2020.3609.https://repositorio.ufu.br/handle/123456789/31835http://doi.org/10.14393/ufu.di.2020.3609Nesse trabalho, estudandos a física de uma impureza magnética acoplada a várias bandas de condução (banda metálica, pseud-gap e semicondutora). Porém, o foco principal do trabalho é explicar o comportamento de um sistema constituido por uma impureza quântica, fortemente acoplada a um semicondutor (com gap 2 ) e fracamente acoplada a um contato metálico. Usando Rernoamlização de Grupo Numérica (NRG) e poor man’s scaling no Modelo de Anderson, mostramos que para esse sistema (impureza+metal+semicondutor), exibe um estágio repetição do efeito Kondo à medida que diminui gradualmente a temperatura. A análise do correspondente Modelo de Anderson de uma única impureza (SIAM), através das propriedades termodinâmicas e espectrais da impureza, mostra que o estágio de repetição é caracterizado por uma segunda sequência de pontos fixos SIAM, Orbital Livre (FO) ! Momento Local (LM) ! acoplamento forte (SC). No estágio de temperatura mais alta, o ponto fixo SC (com uma temperatura Kondo TK1) é instável, enquanto o segundo Kondo tem uma temperatura Kondo TK2 muito mais baixa, associada a um ponto fixo SC estável . Os resultados sugerem claramente que a repetição está associada a um SIAM efetivo, com um pico de Hubbard Ueff, cujo valor é claramente identificável na densidade de estados local da impureza.Esse SIAM efetivo para baixa temperatura, que chamamos de repetição do SIAM, se comporta como uma réplica do SIAM de alta temperatura. O fluxo RG do segundo estágio (obtido através do NRG), cujo ponto fixo FO emerge por T < TK1, assume o controle assim que o RG flui para longe do ponto fixo SC instável do primeiro estágio. A imagem intuitiva que emerge de nossa análise é que o primeiro estado de Kondo se desenvolve por meio da blindagem da impureza por elétrons semicondutores, enquanto o segundo estágio envolve a blindagem por elétrons metálicos, uma vez que os elétrons semicondutores estão fora do alcance das excitações térmicas (T < ) e apenas os elétrons metálicos, dentro do gap estão disponíveis para a blindagem da impureza. Para todos os intervalos de parâmetros analisados, através do NRG encontramos TK2 TK1. Por último, nós analizamos um sistema hibrido formado por uma impureza ‘imprensada’ entre uma nanofita de grafeno armchair (AGNR) e um microscópio de tunelamento de varredura (STM). Nesse sistema, a energia do gap (2 ) pode ser externamente alterada por um campo elétrinco induzido por interação spin-orbita Rashba. Analizamos esse sistema para parâmetros realísticos, usando NRG, e concluimos que a repetição do SIAM, e o segundo estágio Kondo, pode ser investigado experimentalmente.In this work, we study the physics of a magnetic impurity coupled to several conduction band structures (metallic band, pseudo-gap systems and semiconductors with finite gap). However, the main focus is to explain the behavior of a system comprising a quantum impurity, strongly coupled to a semiconductor (with gap 2 ) and weakly coupled to a metal. Using the Numerical Renormalization Group (NRG) and Anderson’s poor man’s scaling, we show that this system (Impurity+metal-semiconductor hybrid contact), displays a reentrant Kondo stage as one gradually lowers the temperature. The analysis of the corresponding Single Impurity Anderson Model (SIAM), through the impurity’s thermodynamic and spectral properties, shows that the reentrant stage is characterized by a second sequence of SIAM fixed points, viz., free orbital (FO) ! local moment (LM) ! strong coupling (SC). In the higher temperature stage, the SC fixed point (with a Kondo temperature TK1) is unstable, while in the lower temperature, the Kondo screening exhibits a much lower Kondo temperature TK2, associated to a stable SC fixed point. The results clearly suggest that the reentrant Kondo screening is associated to an effective SIAM, with an effective Hubbard Ueff, whose value is clearly identifiable in the impurity’s local density of states. This reentrant SIAM, or effective SIAM, at temperatures below the gap, behaves as a replica of the high temperature SIAM. We show this in our results, and more specifically, in the NRG flow diagram (obtained through NRG). The second stage RG flow, whose FO fixed point emerges for T < TK1, takes over once the RG flows away from the unstable first stage SC fixed point. The intuitive picture that emerges from our analysis is that the first Kondo state develops through impurity screening by semiconducting electrons, while the second stage involves screening by metallic electrons, once the semiconducting electrons are out of reach to thermal excitations (T < ) and only the metallic (low) spectral weight inside the gap is available for impurity screening. For all parameter ranges analyzed, we find through the NRG results that TK2 TK1. Last, we analyze a hybrid system formed by a quantum impurity ‘sandwiched’ between an armchair graphene nanoribbon (AGNR) and a scanning tunneling microscope (STM). In this system, the energy gap (2 ) can be externally tuned by an electric-field-induced Rashba spin-orbit interaction. We analyzed this system for realistic parameter values, using NRG, and concluded that the reentrant SIAM, and the second stage Kondo, is worthy of experimental investigation.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)engUniversidade Federal de UberlândiaPrograma de Pós-graduação em FísicaBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRAFísicaKondo TemperatureCritical CouplingReentrant KondoReentrant SIAMArmchair graphene nanoribbonTemperatura KondoAcoplamento CríticoRepetição do KondoRepetição do SIAMNanofita de grafeno armchairReentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contactReaparecimento do efeito Kondo em uma impureza quântica acoplada com um contato híbrido metal-semicondutorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisVernek, Edsonhttp://lattes.cnpq.br/9079608448928851Martins, George Balsterhttp://lattes.cnpq.br/1027030500014584Pinto, Diogo de Oliveira Soareshttp://lattes.cnpq.br/5312105238639903Ferreira, Gerson J.http://lattes.cnpq.br/5120648547164724http://lattes.cnpq.br/1692940586533894Silva, Gustavo Diniz7194760816reponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFUCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufu.br/bitstream/123456789/31835/7/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD57ORIGINALReentrantKondoEffect.pdfReentrantKondoEffect.pdfDissertaçãoapplication/pdf4769654https://repositorio.ufu.br/bitstream/123456789/31835/9/ReentrantKondoEffect.pdff7f4a5a6e8f789001362398bdf088468MD59LICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.ufu.br/bitstream/123456789/31835/10/license.txt48ded82ce41b8d2426af12aed6b3cbf3MD510TEXTReentrantKondoEffect.pdf.txtReentrantKondoEffect.pdf.txtExtracted texttext/plain112099https://repositorio.ufu.br/bitstream/123456789/31835/11/ReentrantKondoEffect.pdf.txt260df2fda37312a1afa7040eabb3f0f9MD511THUMBNAILReentrantKondoEffect.pdf.jpgReentrantKondoEffect.pdf.jpgGenerated Thumbnailimage/jpeg1207https://repositorio.ufu.br/bitstream/123456789/31835/12/ReentrantKondoEffect.pdf.jpgfbb5bf23949e44477de09e7563551728MD512123456789/318352021-06-01 03:18:11.821oai:repositorio.ufu.br:123456789/31835w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLCBhbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYSBsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0gY29udGF0byBhdHJhdsOpcyBkbyBlLW1haWwgIHJlcG9zaXRvcmlvQHVmdS5ici4KCkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpBbyBhc3NpbmFyIGUgZW50cmVnYXIgZXN0YSBsaWNlbsOnYSwgby9hIFNyLi9TcmEuIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpOgoKYSkgQ29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBVYmVybMOibmRpYSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGFiYWl4byksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIgbyBkb2N1bWVudG8gZW50cmVndWUgKGluY2x1aW5kbyBvIHJlc3Vtby9hYnN0cmFjdCkgZW0gZm9ybWF0byBkaWdpdGFsIG91IGltcHJlc3NvIGUgZW0gcXVhbHF1ZXIgbWVpby4KCmIpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50byBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuCgpjKSBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSBjb250w6ltIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBwYXJhIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFViZXJsw6JuZGlhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBVYmVybMOibmRpYSwgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFViZXJsw6JuZGlhIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBvKHMpIHNldShzKSBub21lKHMpIGNvbW8gbyhzKSBhdXRvcihlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2021-06-01T06:18:11Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.pt_BR.fl_str_mv Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact
dc.title.alternative.pt_BR.fl_str_mv Reaparecimento do efeito Kondo em uma impureza quântica acoplada com um contato híbrido metal-semicondutor
title Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact
spellingShingle Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact
Silva, Gustavo Diniz
CNPQ::CIENCIAS EXATAS E DA TERRA
Kondo Temperature
Critical Coupling
Reentrant Kondo
Reentrant SIAM
Armchair graphene nanoribbon
Temperatura Kondo
Acoplamento Crítico
Repetição do Kondo
Repetição do SIAM
Nanofita de grafeno armchair
Física
title_short Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact
title_full Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact
title_fullStr Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact
title_full_unstemmed Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact
title_sort Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact
author Silva, Gustavo Diniz
author_facet Silva, Gustavo Diniz
author_role author
dc.contributor.advisor-co1.fl_str_mv Vernek, Edson
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9079608448928851
dc.contributor.advisor1.fl_str_mv Martins, George Balster
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1027030500014584
dc.contributor.referee1.fl_str_mv Pinto, Diogo de Oliveira Soares
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5312105238639903
dc.contributor.referee2.fl_str_mv Ferreira, Gerson J.
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5120648547164724
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1692940586533894
dc.contributor.author.fl_str_mv Silva, Gustavo Diniz
contributor_str_mv Vernek, Edson
Martins, George Balster
Pinto, Diogo de Oliveira Soares
Ferreira, Gerson J.
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA
topic CNPQ::CIENCIAS EXATAS E DA TERRA
Kondo Temperature
Critical Coupling
Reentrant Kondo
Reentrant SIAM
Armchair graphene nanoribbon
Temperatura Kondo
Acoplamento Crítico
Repetição do Kondo
Repetição do SIAM
Nanofita de grafeno armchair
Física
dc.subject.por.fl_str_mv Kondo Temperature
Critical Coupling
Reentrant Kondo
Reentrant SIAM
Armchair graphene nanoribbon
Temperatura Kondo
Acoplamento Crítico
Repetição do Kondo
Repetição do SIAM
Nanofita de grafeno armchair
dc.subject.autorizado.pt_BR.fl_str_mv Física
description Nesse trabalho, estudandos a física de uma impureza magnética acoplada a várias bandas de condução (banda metálica, pseud-gap e semicondutora). Porém, o foco principal do trabalho é explicar o comportamento de um sistema constituido por uma impureza quântica, fortemente acoplada a um semicondutor (com gap 2 ) e fracamente acoplada a um contato metálico. Usando Rernoamlização de Grupo Numérica (NRG) e poor man’s scaling no Modelo de Anderson, mostramos que para esse sistema (impureza+metal+semicondutor), exibe um estágio repetição do efeito Kondo à medida que diminui gradualmente a temperatura. A análise do correspondente Modelo de Anderson de uma única impureza (SIAM), através das propriedades termodinâmicas e espectrais da impureza, mostra que o estágio de repetição é caracterizado por uma segunda sequência de pontos fixos SIAM, Orbital Livre (FO) ! Momento Local (LM) ! acoplamento forte (SC). No estágio de temperatura mais alta, o ponto fixo SC (com uma temperatura Kondo TK1) é instável, enquanto o segundo Kondo tem uma temperatura Kondo TK2 muito mais baixa, associada a um ponto fixo SC estável . Os resultados sugerem claramente que a repetição está associada a um SIAM efetivo, com um pico de Hubbard Ueff, cujo valor é claramente identificável na densidade de estados local da impureza.Esse SIAM efetivo para baixa temperatura, que chamamos de repetição do SIAM, se comporta como uma réplica do SIAM de alta temperatura. O fluxo RG do segundo estágio (obtido através do NRG), cujo ponto fixo FO emerge por T < TK1, assume o controle assim que o RG flui para longe do ponto fixo SC instável do primeiro estágio. A imagem intuitiva que emerge de nossa análise é que o primeiro estado de Kondo se desenvolve por meio da blindagem da impureza por elétrons semicondutores, enquanto o segundo estágio envolve a blindagem por elétrons metálicos, uma vez que os elétrons semicondutores estão fora do alcance das excitações térmicas (T < ) e apenas os elétrons metálicos, dentro do gap estão disponíveis para a blindagem da impureza. Para todos os intervalos de parâmetros analisados, através do NRG encontramos TK2 TK1. Por último, nós analizamos um sistema hibrido formado por uma impureza ‘imprensada’ entre uma nanofita de grafeno armchair (AGNR) e um microscópio de tunelamento de varredura (STM). Nesse sistema, a energia do gap (2 ) pode ser externamente alterada por um campo elétrinco induzido por interação spin-orbita Rashba. Analizamos esse sistema para parâmetros realísticos, usando NRG, e concluimos que a repetição do SIAM, e o segundo estágio Kondo, pode ser investigado experimentalmente.
publishDate 2020
dc.date.issued.fl_str_mv 2020-02-20
dc.date.accessioned.fl_str_mv 2021-05-31T16:49:26Z
dc.date.available.fl_str_mv 2021-05-31T16:49:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Gustavo Diniz. Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact. 2020. 71 f. Dissertação (Mestrado em Física) – Universidade federal de Uberlândia. Uberlândia. 2020. Disponível em: http://doi.org/10.14393/ufu.di.2020.3609.
dc.identifier.uri.fl_str_mv https://repositorio.ufu.br/handle/123456789/31835
dc.identifier.doi.pt_BR.fl_str_mv http://doi.org/10.14393/ufu.di.2020.3609
identifier_str_mv SILVA, Gustavo Diniz. Reentrant Kondo effect in a quantum impurity coupled to a metal-semiconductor hybrid contact. 2020. 71 f. Dissertação (Mestrado em Física) – Universidade federal de Uberlândia. Uberlândia. 2020. Disponível em: http://doi.org/10.14393/ufu.di.2020.3609.
url https://repositorio.ufu.br/handle/123456789/31835
http://doi.org/10.14393/ufu.di.2020.3609
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Física
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
bitstream.url.fl_str_mv https://repositorio.ufu.br/bitstream/123456789/31835/7/license_rdf
https://repositorio.ufu.br/bitstream/123456789/31835/9/ReentrantKondoEffect.pdf
https://repositorio.ufu.br/bitstream/123456789/31835/10/license.txt
https://repositorio.ufu.br/bitstream/123456789/31835/11/ReentrantKondoEffect.pdf.txt
https://repositorio.ufu.br/bitstream/123456789/31835/12/ReentrantKondoEffect.pdf.jpg
bitstream.checksum.fl_str_mv 9868ccc48a14c8d591352b6eaf7f6239
f7f4a5a6e8f789001362398bdf088468
48ded82ce41b8d2426af12aed6b3cbf3
260df2fda37312a1afa7040eabb3f0f9
fbb5bf23949e44477de09e7563551728
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1802110908891136000