Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Ávila Neto, Cícero Naves de lattes
Orientador(a): Assis, Adilson José de lattes
Banca de defesa: Aznar, Martín lattes, Romanielo, Lucienne Lobato lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Química
Departamento: Engenharias
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufu.br/handle/123456789/15123
Resumo: Catalytic reforming of hydrocarbons or other organic species is a technology usually employed in either improving traditional energy sources or producing alternative energy sources. Amongst the technologies employed in improving traditional energy sources, one can include catalytic reforming of petrochemical naphtha. Although being also employed to produce hydrogen, the main goal of this reforming is to transform naphthenic compounds and paraffins in branched-chain isoparaffins and aromatic compounds, used to produce polymers and to increase gasoline octane rating. When the reforming processes are applied to produce alternative energy sources, attention has mostly been given to hydrogen production. Hydrogen is mainly produced from non-renewable fossil fuels, especially by means of steam catalytic reforming of methane, main component of natural gas, and in refineries, through oxidative reforming of higher hydrocarbons. More recently, hydrogen production from catalytic reforming of ethanol has also been studied. It has the advantage of reduced carbon dioxide emission, easiness of storage and distribution of ethanol and a higher yield of hydrogen. The composition of the reformate is very dependent on the variables involved in the process, such as pressure, temperature and reactant feed ratios. The effect of these variables can be studied by means of definition and analysis of some performance parameters such as conversion, yield, selectivity, coke deposition and others. Usually, the first step for this type of investigation is the accomplishment of a thermodynamic analysis for each process through methods of Gibbs free energy minimization. These methods result in non-linear algebraic equation systems, solved numerically with the aid of appropriated software. In this work, a Lagrange Multipliers method based thermodynamic analysis is conducted for the oxidative and autothermal reforming of methane; steam, dry, oxidative and autothermal reforming of ethanol; and naphtha reforming. The main goals of this work are to determine the linearly independent reactions which represent the chemical equilibrium of each reforming system and to foresee the best conditions in which each reaction system should be operated to reach specific goals. To validate the simulations, the results are compared with experimental and simulation data specific of chemical equilibrium. The set of linearly independent reactions of each reforming system was determined and validated through mole balances for each species involved in the process. Ethanol reforming systems showed higher hydrogen yields compared to those of methane reforming. Among all methane reforming systems, oxidative reforming showed the higher yield, with a value of 200%, for a temperature of 1273 K, atmospheric pressure, without feeding oxygen. For ethanol reforming systems, the higher hydrogen yield, with a value of 479%, was obtained for steam reforming in a temperature of 1110 K, 1 atm of pressure and H2O/C2H5OH feed ratio equal to 6. Among the methane reforming systems, autothermal reforming deposited the lesser amount of coke (0,03 moles). Concerning the ethanol reforming systems, autothermal reforming also deposited the lesser amount of coke, with a value of 0,02 moles. For naphtha reforming, it was verified that hydrogen and methane are the most abundant species constituting the reformate. Carbon formation increased a lot when increasing the operational temperature, but it was possible to decrease it in the same magnitude increasing the operational pressure and the H2/Naphtha feed ratio. To increase the aromatics yield, it was necessary to raise both the temperature and the pressure. The resolution of the non-linear algebraic equation systems was carried out with the open-source software Scilab.
id UFU_4a37e493b1307745100f732e9ce2ba22
oai_identifier_str oai:repositorio.ufu.br:123456789/15123
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling 2016-06-22T18:41:36Z2009-08-202016-06-22T18:41:36Z2009-02-18ÁVILA NETO, Cícero Naves de. Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta. 2009. 154 f. Dissertação (Mestrado em Engenharias) - Universidade Federal de Uberlândia, Uberlândia, 2009.https://repositorio.ufu.br/handle/123456789/15123Catalytic reforming of hydrocarbons or other organic species is a technology usually employed in either improving traditional energy sources or producing alternative energy sources. Amongst the technologies employed in improving traditional energy sources, one can include catalytic reforming of petrochemical naphtha. Although being also employed to produce hydrogen, the main goal of this reforming is to transform naphthenic compounds and paraffins in branched-chain isoparaffins and aromatic compounds, used to produce polymers and to increase gasoline octane rating. When the reforming processes are applied to produce alternative energy sources, attention has mostly been given to hydrogen production. Hydrogen is mainly produced from non-renewable fossil fuels, especially by means of steam catalytic reforming of methane, main component of natural gas, and in refineries, through oxidative reforming of higher hydrocarbons. More recently, hydrogen production from catalytic reforming of ethanol has also been studied. It has the advantage of reduced carbon dioxide emission, easiness of storage and distribution of ethanol and a higher yield of hydrogen. The composition of the reformate is very dependent on the variables involved in the process, such as pressure, temperature and reactant feed ratios. The effect of these variables can be studied by means of definition and analysis of some performance parameters such as conversion, yield, selectivity, coke deposition and others. Usually, the first step for this type of investigation is the accomplishment of a thermodynamic analysis for each process through methods of Gibbs free energy minimization. These methods result in non-linear algebraic equation systems, solved numerically with the aid of appropriated software. In this work, a Lagrange Multipliers method based thermodynamic analysis is conducted for the oxidative and autothermal reforming of methane; steam, dry, oxidative and autothermal reforming of ethanol; and naphtha reforming. The main goals of this work are to determine the linearly independent reactions which represent the chemical equilibrium of each reforming system and to foresee the best conditions in which each reaction system should be operated to reach specific goals. To validate the simulations, the results are compared with experimental and simulation data specific of chemical equilibrium. The set of linearly independent reactions of each reforming system was determined and validated through mole balances for each species involved in the process. Ethanol reforming systems showed higher hydrogen yields compared to those of methane reforming. Among all methane reforming systems, oxidative reforming showed the higher yield, with a value of 200%, for a temperature of 1273 K, atmospheric pressure, without feeding oxygen. For ethanol reforming systems, the higher hydrogen yield, with a value of 479%, was obtained for steam reforming in a temperature of 1110 K, 1 atm of pressure and H2O/C2H5OH feed ratio equal to 6. Among the methane reforming systems, autothermal reforming deposited the lesser amount of coke (0,03 moles). Concerning the ethanol reforming systems, autothermal reforming also deposited the lesser amount of coke, with a value of 0,02 moles. For naphtha reforming, it was verified that hydrogen and methane are the most abundant species constituting the reformate. Carbon formation increased a lot when increasing the operational temperature, but it was possible to decrease it in the same magnitude increasing the operational pressure and the H2/Naphtha feed ratio. To increase the aromatics yield, it was necessary to raise both the temperature and the pressure. The resolution of the non-linear algebraic equation systems was carried out with the open-source software Scilab.A reforma catalítica de hidrocarbonetos ou de outras substâncias orgânicas é uma tecnologia frequentemente utilizada no aprimoramento das fontes de energia tradicionais ou na produção de fontes de energia alternativas. Dentre as tecnologias utilizadas para o aprimoramento das fontes de energia tradicionais está a reforma catalítica da nafta petroquímica. Apesar de poder ser utilizada para produzir hidrogênio, o objetivo principal desta reforma é transformar compostos naftênicos e parafinas em isoparafinas de cadeia ramificada e compostos aromáticos, utilizados para produzir polímeros e aumentar a octanagem da gasolina. No caso em que os processos de reforma são aplicados à produção de fontes de energia alternativa, tem-se dirigido bastante atenção à produção de hidrogênio. A maior parte do hidrogênio é atualmente produzida a partir de combustíveis fósseis, particularmente pela reforma catalítica a vapor do metano, principal componente do gás natural, e em refinarias, pela reforma oxidativa de hidrocarbonetos mais pesados. Mais recentemente, tem-se estudado a produção de hidrogênio a partir da reforma catalítica do etanol. Esta última apresenta a vantagem da diminuição das emissões de dióxido de carbono, além de facilidade de armazenamento e distribuição do etanol e um rendimento maior para o hidrogênio produzido. A composição do reformado é extremamente dependente das variáveis envolvidas no processo, tais como temperatura, pressão e razão de alimentação dos reagentes. Os efeitos destas variáveis podem então ser estudados a partir da definição e análise de parâmetros de desempenho, tais como a conversão, rendimento, seletividade, deposição de carbono na forma de coque, entre outros. Usualmente, a primeira etapa deste tipo de investigação é a realização de uma análise termodinâmica através de métodos de minimização da energia livre de Gibbs. Estes métodos resultam em sistemas de equações algébricas nãolineares, resolvidos numericamente em softwares apropriados. Neste trabalho, são conduzidas análises termodinâmicas das reações de reforma oxidativa e autotérmica do metano, das reformas a vapor, seca, oxidativa e autotérmica do etanol, e da reforma da nafta, baseadas no método dos Multiplicadores de Lagrange. Têm-se como objetivos principais a determinação das reações linearmente independentes que representam o equilíbrio termodinâmico de cada reforma e prever as melhores condições nas quais cada sistema reacional deve ser operado para alcançar objetivos específicos. Para a validação, os resultados são comparados com dados experimentais e/ou de simulação, específicos de equilíbrio termodinâmico, publicados na literatura. O conjunto de reações linearmente independentes referentes a cada sistema foi determinado e validado através de balanços molares para as espécies. Os sistemas de reforma do etanol apresentaram rendimentos para o hidrogênio superiores aos sistemas de reforma do metano. Entre as reformas do metano, a reforma oxidativa apresentou o maior rendimento, com um valor de 200%, para uma temperatura de 1273 K, pressão de 1 atm, sem haver alimentação de oxigênio. Entre as reformas do etanol, o máximo rendimento para o hidrogênio, no valor de 479%, foi obtido para a reforma a vapor em uma temperatura de 1110 K, pressão de 1 atm e razão H2O/C2H5OH igual a 6. Entre as reformas do metano, a reforma autotérmica apresentou a menor deposição de carbono, ou seja, 0,03 mols. Entre as reformas do etanol, a reforma autotérmica também apresentou a menor deposição de carbono, no valor de 0,02 mols. Para a reforma da nafta, verificou-se que as espécies formadas em maior quantidade são o hidrogênio e o metano. A deposição de carbono aumentou bastante com o aumento da temperatura, mas foi possível diminuí-la na mesma magnitude com o aumento da pressão e da razão H2/Nafta na alimentação. Para aumentar o rendimento dos aromáticos, foi preciso aumentar tanto a temperatura quanto a pressão. A resolução do sistema de equações não-lineares foi feita no software livre Scilab.Mestre em Engenharia Químicaapplication/pdfporUniversidade Federal de UberlândiaPrograma de Pós-graduação em Engenharia QuímicaUFUBREngenhariasHidrogênioMetanoÁlcoolNaftaCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAAnálise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da naftainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisHori, Carla Eponinahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784205E1Assis, Adilson José dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728863Z6Aznar, Martínhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797371H8Romanielo, Lucienne Lobatohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4764930H4http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4257334Z3Ávila Neto, Cícero Naves deinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFUTHUMBNAILdis.pdf.jpgdis.pdf.jpgGenerated Thumbnailimage/jpeg1243https://repositorio.ufu.br/bitstream/123456789/15123/3/dis.pdf.jpg41e93f9a709d06665c8a1980a94e7139MD53ORIGINALdis.pdfapplication/pdf2474707https://repositorio.ufu.br/bitstream/123456789/15123/1/dis.pdf54f7d26f76446a08b55b1a9764d9c444MD51TEXTdis.pdf.txtdis.pdf.txtExtracted texttext/plain390651https://repositorio.ufu.br/bitstream/123456789/15123/2/dis.pdf.txta0272bd57fabdca6ce9751da1554c579MD52123456789/151232017-06-26 15:38:06.623oai:repositorio.ufu.br:123456789/15123Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2017-06-26T18:38:06Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.por.fl_str_mv Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta
title Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta
spellingShingle Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta
Ávila Neto, Cícero Naves de
Hidrogênio
Metano
Álcool
Nafta
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta
title_full Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta
title_fullStr Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta
title_full_unstemmed Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta
title_sort Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta
author Ávila Neto, Cícero Naves de
author_facet Ávila Neto, Cícero Naves de
author_role author
dc.contributor.advisor-co1.fl_str_mv Hori, Carla Eponina
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784205E1
dc.contributor.advisor1.fl_str_mv Assis, Adilson José de
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728863Z6
dc.contributor.referee1.fl_str_mv Aznar, Martín
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797371H8
dc.contributor.referee2.fl_str_mv Romanielo, Lucienne Lobato
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4764930H4
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4257334Z3
dc.contributor.author.fl_str_mv Ávila Neto, Cícero Naves de
contributor_str_mv Hori, Carla Eponina
Assis, Adilson José de
Aznar, Martín
Romanielo, Lucienne Lobato
dc.subject.por.fl_str_mv Hidrogênio
Metano
Álcool
Nafta
topic Hidrogênio
Metano
Álcool
Nafta
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description Catalytic reforming of hydrocarbons or other organic species is a technology usually employed in either improving traditional energy sources or producing alternative energy sources. Amongst the technologies employed in improving traditional energy sources, one can include catalytic reforming of petrochemical naphtha. Although being also employed to produce hydrogen, the main goal of this reforming is to transform naphthenic compounds and paraffins in branched-chain isoparaffins and aromatic compounds, used to produce polymers and to increase gasoline octane rating. When the reforming processes are applied to produce alternative energy sources, attention has mostly been given to hydrogen production. Hydrogen is mainly produced from non-renewable fossil fuels, especially by means of steam catalytic reforming of methane, main component of natural gas, and in refineries, through oxidative reforming of higher hydrocarbons. More recently, hydrogen production from catalytic reforming of ethanol has also been studied. It has the advantage of reduced carbon dioxide emission, easiness of storage and distribution of ethanol and a higher yield of hydrogen. The composition of the reformate is very dependent on the variables involved in the process, such as pressure, temperature and reactant feed ratios. The effect of these variables can be studied by means of definition and analysis of some performance parameters such as conversion, yield, selectivity, coke deposition and others. Usually, the first step for this type of investigation is the accomplishment of a thermodynamic analysis for each process through methods of Gibbs free energy minimization. These methods result in non-linear algebraic equation systems, solved numerically with the aid of appropriated software. In this work, a Lagrange Multipliers method based thermodynamic analysis is conducted for the oxidative and autothermal reforming of methane; steam, dry, oxidative and autothermal reforming of ethanol; and naphtha reforming. The main goals of this work are to determine the linearly independent reactions which represent the chemical equilibrium of each reforming system and to foresee the best conditions in which each reaction system should be operated to reach specific goals. To validate the simulations, the results are compared with experimental and simulation data specific of chemical equilibrium. The set of linearly independent reactions of each reforming system was determined and validated through mole balances for each species involved in the process. Ethanol reforming systems showed higher hydrogen yields compared to those of methane reforming. Among all methane reforming systems, oxidative reforming showed the higher yield, with a value of 200%, for a temperature of 1273 K, atmospheric pressure, without feeding oxygen. For ethanol reforming systems, the higher hydrogen yield, with a value of 479%, was obtained for steam reforming in a temperature of 1110 K, 1 atm of pressure and H2O/C2H5OH feed ratio equal to 6. Among the methane reforming systems, autothermal reforming deposited the lesser amount of coke (0,03 moles). Concerning the ethanol reforming systems, autothermal reforming also deposited the lesser amount of coke, with a value of 0,02 moles. For naphtha reforming, it was verified that hydrogen and methane are the most abundant species constituting the reformate. Carbon formation increased a lot when increasing the operational temperature, but it was possible to decrease it in the same magnitude increasing the operational pressure and the H2/Naphtha feed ratio. To increase the aromatics yield, it was necessary to raise both the temperature and the pressure. The resolution of the non-linear algebraic equation systems was carried out with the open-source software Scilab.
publishDate 2009
dc.date.available.fl_str_mv 2009-08-20
2016-06-22T18:41:36Z
dc.date.issued.fl_str_mv 2009-02-18
dc.date.accessioned.fl_str_mv 2016-06-22T18:41:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ÁVILA NETO, Cícero Naves de. Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta. 2009. 154 f. Dissertação (Mestrado em Engenharias) - Universidade Federal de Uberlândia, Uberlândia, 2009.
dc.identifier.uri.fl_str_mv https://repositorio.ufu.br/handle/123456789/15123
identifier_str_mv ÁVILA NETO, Cícero Naves de. Análise termodinâmica das reformas do metano (oxidativa e autotérmica), do etanol e da nafta. 2009. 154 f. Dissertação (Mestrado em Engenharias) - Universidade Federal de Uberlândia, Uberlândia, 2009.
url https://repositorio.ufu.br/handle/123456789/15123
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Engenharia Química
dc.publisher.initials.fl_str_mv UFU
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Engenharias
publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
bitstream.url.fl_str_mv https://repositorio.ufu.br/bitstream/123456789/15123/3/dis.pdf.jpg
https://repositorio.ufu.br/bitstream/123456789/15123/1/dis.pdf
https://repositorio.ufu.br/bitstream/123456789/15123/2/dis.pdf.txt
bitstream.checksum.fl_str_mv 41e93f9a709d06665c8a1980a94e7139
54f7d26f76446a08b55b1a9764d9c444
a0272bd57fabdca6ce9751da1554c579
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1792331430080020480