Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Rabelo, Amanda Gomes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/39125
http://doi.org/10.14393/ufu.te.2023.515
Resumo: Tremor serves as a significant biomarker for various diseases, including Parkinson's Disease, and plays a crucial role in monitoring disease progression, assessing treatment efficacy, and aiding in the diagnosis of movement disorders. Despite considerable progress in tremor research over the past thirty-eight years, challenges still remain in understanding the nature of tremors and within-individual fluctuations. A deeper understanding of tremors can lead to personalized treatment approaches and optimize pharmacogenomics studies for the pathology. The objective of this research is to identify and characterize the Short-Term Motor Patterns (STMPs) present in the rest tremor signal using inertial sensors. STMPs manifest in the signal in less than 1 second and exhibit self-similar structures across multiple time scales. They have a hidden dynamic with underlying structures contributing to the abnormal movement observed in tremors. The study involved healthy individuals (N = 12, mean age 60.1 ± 5.9 years) and individuals with Parkinson's Disease (N = 14, mean age 65 ± 11.54 years). Signals were collected using a triaxial gyroscope placed on the dorsal side of the hand during a resting condition. The data were pre-processed, and seven features were extracted from each 1-second window with 50% overlap. The STMPs were identified using the k-means clustering technique applied to the data in the two-dimensional space generated by t-Distributed Stochastic Neighbor Embedding (t-SNE). The frequency, transition probability, and duration of the STMPs were assessed for each group. All STMP features were averaged across the groups. Three distinct STMPs (STMP1, STMP2, and STMP3) were identified in the tremor signals (p < 0.05). STMP1 was predominant in the healthy control (HC) subjects, STMP2 was present in both the healthy and Parkinson's disease group, and STMP3 was observed in the Parkinson's disease group. Only the coefficient of variation and complexity not showed significant differences between the groups. Regarding signal dynamics, signals from individuals with Parkinson's disease tended to exhibit lower STMP transition probabilities and longer durations of STMP than the healthy control subjects. These findings can assist professionals in characterizing and evaluating the severity of tremors and assessing treatment efficacy.
id UFU_d3e4884edd5f38698b2b36bbd510f31f
oai_identifier_str oai:repositorio.ufu.br:123456789/39125
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s diseaseIdentificação e caracterização de padrões motores de curto prazo no tremor de repouso de indivíduos com doença de ParkinsonEmpirical Mode Decompositionk-meansgyroscopeParkinson’s diseaserest tremorshort-term motor patterns (STMPs)t-SNEgiroscópiodoença de Parkinsontremor de repousopadrões motores de curto prazo (STMP)CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOSEngenharia elétricaParkinson, Doença deDistúrbios psicomotoresGiroscópiosTremor serves as a significant biomarker for various diseases, including Parkinson's Disease, and plays a crucial role in monitoring disease progression, assessing treatment efficacy, and aiding in the diagnosis of movement disorders. Despite considerable progress in tremor research over the past thirty-eight years, challenges still remain in understanding the nature of tremors and within-individual fluctuations. A deeper understanding of tremors can lead to personalized treatment approaches and optimize pharmacogenomics studies for the pathology. The objective of this research is to identify and characterize the Short-Term Motor Patterns (STMPs) present in the rest tremor signal using inertial sensors. STMPs manifest in the signal in less than 1 second and exhibit self-similar structures across multiple time scales. They have a hidden dynamic with underlying structures contributing to the abnormal movement observed in tremors. The study involved healthy individuals (N = 12, mean age 60.1 ± 5.9 years) and individuals with Parkinson's Disease (N = 14, mean age 65 ± 11.54 years). Signals were collected using a triaxial gyroscope placed on the dorsal side of the hand during a resting condition. The data were pre-processed, and seven features were extracted from each 1-second window with 50% overlap. The STMPs were identified using the k-means clustering technique applied to the data in the two-dimensional space generated by t-Distributed Stochastic Neighbor Embedding (t-SNE). The frequency, transition probability, and duration of the STMPs were assessed for each group. All STMP features were averaged across the groups. Three distinct STMPs (STMP1, STMP2, and STMP3) were identified in the tremor signals (p < 0.05). STMP1 was predominant in the healthy control (HC) subjects, STMP2 was present in both the healthy and Parkinson's disease group, and STMP3 was observed in the Parkinson's disease group. Only the coefficient of variation and complexity not showed significant differences between the groups. Regarding signal dynamics, signals from individuals with Parkinson's disease tended to exhibit lower STMP transition probabilities and longer durations of STMP than the healthy control subjects. These findings can assist professionals in characterizing and evaluating the severity of tremors and assessing treatment efficacy.FAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas GeraisTese (Doutorado)O tremor é um significante biomarcador para várias doenças, incluindo a doença de Parkinson e desempenha um papel fundamental no monitoramento da progressão da doença, na avaliação da eficácia de tratamentos e auxiliando no diagnóstico. Apesar do considerável progresso das pesquisas envolvendo tremor nos últimos 30 anos, ainda existem desafios na compreensão da natureza do tremor e nas flutuações individuais. Uma compreensão profunda dos tremores pode auxiliar em tratamentos personalizados e otimizar estudos de fármacos para a patologia. O objetivo dessa pesquisa é identificar e caracterizar os padrões motores de curto prazo (STMPs) presentes no sinal do tremor por meio do giroscópio. Os STMPs manifestam no sinal em uma janela menor que 1 segundo e exibem estruturas auto-semelhantes em múltiplas escalas de tempo. Eles possuem uma dinâmica oculta com estruturas subjacentes que contribuem para o movimento anormal observado nos tremores. Este estudo envolveu indivíduos hígidos, no grupo controle (N = 12, media idade 60.1 ± 5.9 anos) e indivíduos com a doença de Parkinson (N = 14, media idade 65 ± 11.54 anos). Os sinais foram coletados usando um giroscópio triaxial posicionado no dorso da mão dominate durante a coleta em repouso. Os dados foram pré-processados e sete características foram extraídas de cada janela de 1 segundo com 50% de sobreposição. Os STMPs foram identificados usando a técnica de clusterização k-menas aplicada ao espaço bidimensional gerados pelo t-Distributed Stochastic Neighbor Embedding (t-SNE). A frequência, probabilidade de transição e tempo de duração dos STMPs foram avaliados para cada grupo. Todas as medias das caracteríticas extraídas dos STMPs foram calculados entre os grupos. Três STMPS distintos (STMP1, STMP2, and STMP3) foram identificados no sinal do tremor (p<0.05). O STMP1 foi predominante em indivíduos do grupo controle, o STMP2 estava presente em ambos os grupos, e o STMP3 foi mais recorrente no grupo co com a doença de Parkinson. Somente o coeficiente de probabilidade e complexidade não apresentaram diferença significativa entre os grupos. Com relação a dinâmica dos sinais, sinais de indivíduos com a doença de Parkinson tendem a possuir a probabilidade de transição entre STMPs menor e maior tempo de duração no STMP quando comparado ao grupo controle. Esses achados podem auxiliar profissionais na caracterização e avaliação da severidade do tremor e avaliação da eficácia de tratamentos.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia ElétricaAlmeida, Rodrigo Maximiano Antunes dehttp://lattes.cnpq.br/4546176200819713Andrade, Adriano de Oliveirahttp://lattes.cnpq.br/1229329519982110Rodriguez, Denis Delislehttp://lattes.cnpq.br/7140331839822423Folador, João Paulohttp://lattes.cnpq.br/2677110078221624Santos, Thiago Ribeiro Teles doshttp://lattes.cnpq.br/8122306011016243Carneiro, Pedro Cunhahttp://lattes.cnpq.br/6699870054095600Rabelo, Amanda Gomes2023-09-18T20:58:02Z2023-09-18T20:58:02Z2023-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfRABELO, Amanda Gomes. EIdentification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease. 2023. 81 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.515.https://repositorio.ufu.br/handle/123456789/39125http://doi.org/10.14393/ufu.te.2023.515enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-08-22T16:53:18Zoai:repositorio.ufu.br:123456789/39125Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-08-22T16:53:18Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease
Identificação e caracterização de padrões motores de curto prazo no tremor de repouso de indivíduos com doença de Parkinson
title Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease
spellingShingle Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease
Rabelo, Amanda Gomes
Empirical Mode Decomposition
k-means
gyroscope
Parkinson’s disease
rest tremor
short-term motor patterns (STMPs)
t-SNE
giroscópio
doença de Parkinson
tremor de repouso
padrões motores de curto prazo (STMP)
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
Engenharia elétrica
Parkinson, Doença de
Distúrbios psicomotores
Giroscópios
title_short Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease
title_full Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease
title_fullStr Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease
title_full_unstemmed Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease
title_sort Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease
author Rabelo, Amanda Gomes
author_facet Rabelo, Amanda Gomes
author_role author
dc.contributor.none.fl_str_mv Almeida, Rodrigo Maximiano Antunes de
http://lattes.cnpq.br/4546176200819713
Andrade, Adriano de Oliveira
http://lattes.cnpq.br/1229329519982110
Rodriguez, Denis Delisle
http://lattes.cnpq.br/7140331839822423
Folador, João Paulo
http://lattes.cnpq.br/2677110078221624
Santos, Thiago Ribeiro Teles dos
http://lattes.cnpq.br/8122306011016243
Carneiro, Pedro Cunha
http://lattes.cnpq.br/6699870054095600
dc.contributor.author.fl_str_mv Rabelo, Amanda Gomes
dc.subject.por.fl_str_mv Empirical Mode Decomposition
k-means
gyroscope
Parkinson’s disease
rest tremor
short-term motor patterns (STMPs)
t-SNE
giroscópio
doença de Parkinson
tremor de repouso
padrões motores de curto prazo (STMP)
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
Engenharia elétrica
Parkinson, Doença de
Distúrbios psicomotores
Giroscópios
topic Empirical Mode Decomposition
k-means
gyroscope
Parkinson’s disease
rest tremor
short-term motor patterns (STMPs)
t-SNE
giroscópio
doença de Parkinson
tremor de repouso
padrões motores de curto prazo (STMP)
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
Engenharia elétrica
Parkinson, Doença de
Distúrbios psicomotores
Giroscópios
description Tremor serves as a significant biomarker for various diseases, including Parkinson's Disease, and plays a crucial role in monitoring disease progression, assessing treatment efficacy, and aiding in the diagnosis of movement disorders. Despite considerable progress in tremor research over the past thirty-eight years, challenges still remain in understanding the nature of tremors and within-individual fluctuations. A deeper understanding of tremors can lead to personalized treatment approaches and optimize pharmacogenomics studies for the pathology. The objective of this research is to identify and characterize the Short-Term Motor Patterns (STMPs) present in the rest tremor signal using inertial sensors. STMPs manifest in the signal in less than 1 second and exhibit self-similar structures across multiple time scales. They have a hidden dynamic with underlying structures contributing to the abnormal movement observed in tremors. The study involved healthy individuals (N = 12, mean age 60.1 ± 5.9 years) and individuals with Parkinson's Disease (N = 14, mean age 65 ± 11.54 years). Signals were collected using a triaxial gyroscope placed on the dorsal side of the hand during a resting condition. The data were pre-processed, and seven features were extracted from each 1-second window with 50% overlap. The STMPs were identified using the k-means clustering technique applied to the data in the two-dimensional space generated by t-Distributed Stochastic Neighbor Embedding (t-SNE). The frequency, transition probability, and duration of the STMPs were assessed for each group. All STMP features were averaged across the groups. Three distinct STMPs (STMP1, STMP2, and STMP3) were identified in the tremor signals (p < 0.05). STMP1 was predominant in the healthy control (HC) subjects, STMP2 was present in both the healthy and Parkinson's disease group, and STMP3 was observed in the Parkinson's disease group. Only the coefficient of variation and complexity not showed significant differences between the groups. Regarding signal dynamics, signals from individuals with Parkinson's disease tended to exhibit lower STMP transition probabilities and longer durations of STMP than the healthy control subjects. These findings can assist professionals in characterizing and evaluating the severity of tremors and assessing treatment efficacy.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-18T20:58:02Z
2023-09-18T20:58:02Z
2023-08-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv RABELO, Amanda Gomes. EIdentification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease. 2023. 81 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.515.
https://repositorio.ufu.br/handle/123456789/39125
http://doi.org/10.14393/ufu.te.2023.515
identifier_str_mv RABELO, Amanda Gomes. EIdentification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease. 2023. 81 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.515.
url https://repositorio.ufu.br/handle/123456789/39125
http://doi.org/10.14393/ufu.te.2023.515
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1827843517317120000