Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Uberlândia
Brasil Programa de Pós-graduação em Engenharia Elétrica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufu.br/handle/123456789/39125 http://doi.org/10.14393/ufu.te.2023.515 |
Resumo: | Tremor serves as a significant biomarker for various diseases, including Parkinson's Disease, and plays a crucial role in monitoring disease progression, assessing treatment efficacy, and aiding in the diagnosis of movement disorders. Despite considerable progress in tremor research over the past thirty-eight years, challenges still remain in understanding the nature of tremors and within-individual fluctuations. A deeper understanding of tremors can lead to personalized treatment approaches and optimize pharmacogenomics studies for the pathology. The objective of this research is to identify and characterize the Short-Term Motor Patterns (STMPs) present in the rest tremor signal using inertial sensors. STMPs manifest in the signal in less than 1 second and exhibit self-similar structures across multiple time scales. They have a hidden dynamic with underlying structures contributing to the abnormal movement observed in tremors. The study involved healthy individuals (N = 12, mean age 60.1 ± 5.9 years) and individuals with Parkinson's Disease (N = 14, mean age 65 ± 11.54 years). Signals were collected using a triaxial gyroscope placed on the dorsal side of the hand during a resting condition. The data were pre-processed, and seven features were extracted from each 1-second window with 50% overlap. The STMPs were identified using the k-means clustering technique applied to the data in the two-dimensional space generated by t-Distributed Stochastic Neighbor Embedding (t-SNE). The frequency, transition probability, and duration of the STMPs were assessed for each group. All STMP features were averaged across the groups. Three distinct STMPs (STMP1, STMP2, and STMP3) were identified in the tremor signals (p < 0.05). STMP1 was predominant in the healthy control (HC) subjects, STMP2 was present in both the healthy and Parkinson's disease group, and STMP3 was observed in the Parkinson's disease group. Only the coefficient of variation and complexity not showed significant differences between the groups. Regarding signal dynamics, signals from individuals with Parkinson's disease tended to exhibit lower STMP transition probabilities and longer durations of STMP than the healthy control subjects. These findings can assist professionals in characterizing and evaluating the severity of tremors and assessing treatment efficacy. |
| id |
UFU_d3e4884edd5f38698b2b36bbd510f31f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufu.br:123456789/39125 |
| network_acronym_str |
UFU |
| network_name_str |
Repositório Institucional da UFU |
| repository_id_str |
|
| spelling |
Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s diseaseIdentificação e caracterização de padrões motores de curto prazo no tremor de repouso de indivíduos com doença de ParkinsonEmpirical Mode Decompositionk-meansgyroscopeParkinson’s diseaserest tremorshort-term motor patterns (STMPs)t-SNEgiroscópiodoença de Parkinsontremor de repousopadrões motores de curto prazo (STMP)CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOSEngenharia elétricaParkinson, Doença deDistúrbios psicomotoresGiroscópiosTremor serves as a significant biomarker for various diseases, including Parkinson's Disease, and plays a crucial role in monitoring disease progression, assessing treatment efficacy, and aiding in the diagnosis of movement disorders. Despite considerable progress in tremor research over the past thirty-eight years, challenges still remain in understanding the nature of tremors and within-individual fluctuations. A deeper understanding of tremors can lead to personalized treatment approaches and optimize pharmacogenomics studies for the pathology. The objective of this research is to identify and characterize the Short-Term Motor Patterns (STMPs) present in the rest tremor signal using inertial sensors. STMPs manifest in the signal in less than 1 second and exhibit self-similar structures across multiple time scales. They have a hidden dynamic with underlying structures contributing to the abnormal movement observed in tremors. The study involved healthy individuals (N = 12, mean age 60.1 ± 5.9 years) and individuals with Parkinson's Disease (N = 14, mean age 65 ± 11.54 years). Signals were collected using a triaxial gyroscope placed on the dorsal side of the hand during a resting condition. The data were pre-processed, and seven features were extracted from each 1-second window with 50% overlap. The STMPs were identified using the k-means clustering technique applied to the data in the two-dimensional space generated by t-Distributed Stochastic Neighbor Embedding (t-SNE). The frequency, transition probability, and duration of the STMPs were assessed for each group. All STMP features were averaged across the groups. Three distinct STMPs (STMP1, STMP2, and STMP3) were identified in the tremor signals (p < 0.05). STMP1 was predominant in the healthy control (HC) subjects, STMP2 was present in both the healthy and Parkinson's disease group, and STMP3 was observed in the Parkinson's disease group. Only the coefficient of variation and complexity not showed significant differences between the groups. Regarding signal dynamics, signals from individuals with Parkinson's disease tended to exhibit lower STMP transition probabilities and longer durations of STMP than the healthy control subjects. These findings can assist professionals in characterizing and evaluating the severity of tremors and assessing treatment efficacy.FAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas GeraisTese (Doutorado)O tremor é um significante biomarcador para várias doenças, incluindo a doença de Parkinson e desempenha um papel fundamental no monitoramento da progressão da doença, na avaliação da eficácia de tratamentos e auxiliando no diagnóstico. Apesar do considerável progresso das pesquisas envolvendo tremor nos últimos 30 anos, ainda existem desafios na compreensão da natureza do tremor e nas flutuações individuais. Uma compreensão profunda dos tremores pode auxiliar em tratamentos personalizados e otimizar estudos de fármacos para a patologia. O objetivo dessa pesquisa é identificar e caracterizar os padrões motores de curto prazo (STMPs) presentes no sinal do tremor por meio do giroscópio. Os STMPs manifestam no sinal em uma janela menor que 1 segundo e exibem estruturas auto-semelhantes em múltiplas escalas de tempo. Eles possuem uma dinâmica oculta com estruturas subjacentes que contribuem para o movimento anormal observado nos tremores. Este estudo envolveu indivíduos hígidos, no grupo controle (N = 12, media idade 60.1 ± 5.9 anos) e indivíduos com a doença de Parkinson (N = 14, media idade 65 ± 11.54 anos). Os sinais foram coletados usando um giroscópio triaxial posicionado no dorso da mão dominate durante a coleta em repouso. Os dados foram pré-processados e sete características foram extraídas de cada janela de 1 segundo com 50% de sobreposição. Os STMPs foram identificados usando a técnica de clusterização k-menas aplicada ao espaço bidimensional gerados pelo t-Distributed Stochastic Neighbor Embedding (t-SNE). A frequência, probabilidade de transição e tempo de duração dos STMPs foram avaliados para cada grupo. Todas as medias das caracteríticas extraídas dos STMPs foram calculados entre os grupos. Três STMPS distintos (STMP1, STMP2, and STMP3) foram identificados no sinal do tremor (p<0.05). O STMP1 foi predominante em indivíduos do grupo controle, o STMP2 estava presente em ambos os grupos, e o STMP3 foi mais recorrente no grupo co com a doença de Parkinson. Somente o coeficiente de probabilidade e complexidade não apresentaram diferença significativa entre os grupos. Com relação a dinâmica dos sinais, sinais de indivíduos com a doença de Parkinson tendem a possuir a probabilidade de transição entre STMPs menor e maior tempo de duração no STMP quando comparado ao grupo controle. Esses achados podem auxiliar profissionais na caracterização e avaliação da severidade do tremor e avaliação da eficácia de tratamentos.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia ElétricaAlmeida, Rodrigo Maximiano Antunes dehttp://lattes.cnpq.br/4546176200819713Andrade, Adriano de Oliveirahttp://lattes.cnpq.br/1229329519982110Rodriguez, Denis Delislehttp://lattes.cnpq.br/7140331839822423Folador, João Paulohttp://lattes.cnpq.br/2677110078221624Santos, Thiago Ribeiro Teles doshttp://lattes.cnpq.br/8122306011016243Carneiro, Pedro Cunhahttp://lattes.cnpq.br/6699870054095600Rabelo, Amanda Gomes2023-09-18T20:58:02Z2023-09-18T20:58:02Z2023-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfRABELO, Amanda Gomes. EIdentification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease. 2023. 81 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.515.https://repositorio.ufu.br/handle/123456789/39125http://doi.org/10.14393/ufu.te.2023.515enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-08-22T16:53:18Zoai:repositorio.ufu.br:123456789/39125Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-08-22T16:53:18Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
| dc.title.none.fl_str_mv |
Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease Identificação e caracterização de padrões motores de curto prazo no tremor de repouso de indivíduos com doença de Parkinson |
| title |
Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease |
| spellingShingle |
Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease Rabelo, Amanda Gomes Empirical Mode Decomposition k-means gyroscope Parkinson’s disease rest tremor short-term motor patterns (STMPs) t-SNE giroscópio doença de Parkinson tremor de repouso padrões motores de curto prazo (STMP) CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS Engenharia elétrica Parkinson, Doença de Distúrbios psicomotores Giroscópios |
| title_short |
Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease |
| title_full |
Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease |
| title_fullStr |
Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease |
| title_full_unstemmed |
Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease |
| title_sort |
Identification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease |
| author |
Rabelo, Amanda Gomes |
| author_facet |
Rabelo, Amanda Gomes |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Almeida, Rodrigo Maximiano Antunes de http://lattes.cnpq.br/4546176200819713 Andrade, Adriano de Oliveira http://lattes.cnpq.br/1229329519982110 Rodriguez, Denis Delisle http://lattes.cnpq.br/7140331839822423 Folador, João Paulo http://lattes.cnpq.br/2677110078221624 Santos, Thiago Ribeiro Teles dos http://lattes.cnpq.br/8122306011016243 Carneiro, Pedro Cunha http://lattes.cnpq.br/6699870054095600 |
| dc.contributor.author.fl_str_mv |
Rabelo, Amanda Gomes |
| dc.subject.por.fl_str_mv |
Empirical Mode Decomposition k-means gyroscope Parkinson’s disease rest tremor short-term motor patterns (STMPs) t-SNE giroscópio doença de Parkinson tremor de repouso padrões motores de curto prazo (STMP) CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS Engenharia elétrica Parkinson, Doença de Distúrbios psicomotores Giroscópios |
| topic |
Empirical Mode Decomposition k-means gyroscope Parkinson’s disease rest tremor short-term motor patterns (STMPs) t-SNE giroscópio doença de Parkinson tremor de repouso padrões motores de curto prazo (STMP) CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS Engenharia elétrica Parkinson, Doença de Distúrbios psicomotores Giroscópios |
| description |
Tremor serves as a significant biomarker for various diseases, including Parkinson's Disease, and plays a crucial role in monitoring disease progression, assessing treatment efficacy, and aiding in the diagnosis of movement disorders. Despite considerable progress in tremor research over the past thirty-eight years, challenges still remain in understanding the nature of tremors and within-individual fluctuations. A deeper understanding of tremors can lead to personalized treatment approaches and optimize pharmacogenomics studies for the pathology. The objective of this research is to identify and characterize the Short-Term Motor Patterns (STMPs) present in the rest tremor signal using inertial sensors. STMPs manifest in the signal in less than 1 second and exhibit self-similar structures across multiple time scales. They have a hidden dynamic with underlying structures contributing to the abnormal movement observed in tremors. The study involved healthy individuals (N = 12, mean age 60.1 ± 5.9 years) and individuals with Parkinson's Disease (N = 14, mean age 65 ± 11.54 years). Signals were collected using a triaxial gyroscope placed on the dorsal side of the hand during a resting condition. The data were pre-processed, and seven features were extracted from each 1-second window with 50% overlap. The STMPs were identified using the k-means clustering technique applied to the data in the two-dimensional space generated by t-Distributed Stochastic Neighbor Embedding (t-SNE). The frequency, transition probability, and duration of the STMPs were assessed for each group. All STMP features were averaged across the groups. Three distinct STMPs (STMP1, STMP2, and STMP3) were identified in the tremor signals (p < 0.05). STMP1 was predominant in the healthy control (HC) subjects, STMP2 was present in both the healthy and Parkinson's disease group, and STMP3 was observed in the Parkinson's disease group. Only the coefficient of variation and complexity not showed significant differences between the groups. Regarding signal dynamics, signals from individuals with Parkinson's disease tended to exhibit lower STMP transition probabilities and longer durations of STMP than the healthy control subjects. These findings can assist professionals in characterizing and evaluating the severity of tremors and assessing treatment efficacy. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09-18T20:58:02Z 2023-09-18T20:58:02Z 2023-08-30 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
RABELO, Amanda Gomes. EIdentification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease. 2023. 81 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.515. https://repositorio.ufu.br/handle/123456789/39125 http://doi.org/10.14393/ufu.te.2023.515 |
| identifier_str_mv |
RABELO, Amanda Gomes. EIdentification and characterization of short-term motor patterns in rest tremor of individuals with Parkinson’s disease. 2023. 81 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.515. |
| url |
https://repositorio.ufu.br/handle/123456789/39125 http://doi.org/10.14393/ufu.te.2023.515 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Elétrica |
| publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Elétrica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
| instname_str |
Universidade Federal de Uberlândia (UFU) |
| instacron_str |
UFU |
| institution |
UFU |
| reponame_str |
Repositório Institucional da UFU |
| collection |
Repositório Institucional da UFU |
| repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
| repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
| _version_ |
1827843517317120000 |