O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genético

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Nascimento, Moysés
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
BR
Estatística Aplicada e Biometria
Mestrado em Estatística Aplicada e Biometria
UFV
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://locus.ufv.br/handle/123456789/4022
Resumo: Este trabalho teve por objetivo fornecer um referencial teórico e aplicado sobre os principais métodos de simulação de Monte Carlo via cadeias de Markov (MCMC), buscando dar ênfase em aplicações no melhoramento genético. Assim, apresentaram-se os algoritmos de Metropolis-Hastings, simulated annealing e amostrador de Gibbs. Os aspectos teóricos dos métodos foram abordados através de uma discussão detalhada de seus fundamentos com base na teoria de cadeias de Markov. Além da discussão teórica, aplicações concretas foram desenvolvidas. O algoritmo de Metropolis- Hastings foi utilizado para obter estimativas das freqüências de recombinação entre pares de marcadores de uma população F2, de natureza codominante, constituída de 200 indivíduos. O simulated annealing foi aplicado no estabelecimento da melhor ordem de ligação na construção de mapas genéticos de três populações F2 simuladas, com marcadores de natureza codominantes, de tamanhos 50, 100 e 200 indivíduos respectivamente. Para cada população foi estabelecido um genoma com quatro grupos de ligação, com 100 cM de tamanho cada. Os grupos de ligação possuem 51, 21, 11 e 6 marcadores, com uma distância de 2, 5, 10 e 20 cM entre marcas adjacentes respectivamente, ocasionando diferentes graus de saturação. Já o amostrador de Gibbs foi utilizado na obtenção das estimativas dos parâmetros de adaptabilidade e estabilidade, do modelo proposto por Finlay e Wilkinson (1963), através da inferência bayesiana. Foram utilizados os dados de médias de rendimento de cinco genótipos avaliados em nove ambientes, provenientes de ensaios em blocos ao acaso com quatro repetições. Em todas as aplicações os algoritmos se mostraram computacionalmente viáveis e obtiveram resultados satisfatórios.
id UFV_3430af419ad1a89a97c94ff6c316e028
oai_identifier_str oai:locus.ufv.br:123456789/4022
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str
spelling O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genéticoThe use of Monte Carlo simulation via Markov chains in genetic breedingSimulação estocásticaMCMCEstatística genômicaInferência bayesianaStochastic simulationMCMCGenomic statisticsBayesian inferenceCNPQ::CIENCIAS AGRARIASEste trabalho teve por objetivo fornecer um referencial teórico e aplicado sobre os principais métodos de simulação de Monte Carlo via cadeias de Markov (MCMC), buscando dar ênfase em aplicações no melhoramento genético. Assim, apresentaram-se os algoritmos de Metropolis-Hastings, simulated annealing e amostrador de Gibbs. Os aspectos teóricos dos métodos foram abordados através de uma discussão detalhada de seus fundamentos com base na teoria de cadeias de Markov. Além da discussão teórica, aplicações concretas foram desenvolvidas. O algoritmo de Metropolis- Hastings foi utilizado para obter estimativas das freqüências de recombinação entre pares de marcadores de uma população F2, de natureza codominante, constituída de 200 indivíduos. O simulated annealing foi aplicado no estabelecimento da melhor ordem de ligação na construção de mapas genéticos de três populações F2 simuladas, com marcadores de natureza codominantes, de tamanhos 50, 100 e 200 indivíduos respectivamente. Para cada população foi estabelecido um genoma com quatro grupos de ligação, com 100 cM de tamanho cada. Os grupos de ligação possuem 51, 21, 11 e 6 marcadores, com uma distância de 2, 5, 10 e 20 cM entre marcas adjacentes respectivamente, ocasionando diferentes graus de saturação. Já o amostrador de Gibbs foi utilizado na obtenção das estimativas dos parâmetros de adaptabilidade e estabilidade, do modelo proposto por Finlay e Wilkinson (1963), através da inferência bayesiana. Foram utilizados os dados de médias de rendimento de cinco genótipos avaliados em nove ambientes, provenientes de ensaios em blocos ao acaso com quatro repetições. Em todas as aplicações os algoritmos se mostraram computacionalmente viáveis e obtiveram resultados satisfatórios.The objective of this work was to provide a theoretical and applied reference on the main Monte Carlo simulation methods via Markov chains (MCMC), seeking to focus on applications in genetic breeding. Thus, the algorithms of Metropolis-Hastings, simulated annealing and the Gibbs sampler were presented. The theoretical aspects of the methods were approached through a detailed discussion about their foundations based on the Markov chain theory. Besides the theoretical discussion, concrete applications were developed. The Metropolis-Hastings algorithm was used to achieve estimates from the frequencies of recombination between pairs of markers of a population F2, of co-dominant nature, with 200 individuals. The simulated annealing was applied to establish a better linking order in the construction of genetic maps of three simulated populations F2, with markers of co-dominant nature, containing 50, 100 and 200 individuals, respectively. For each population, it was established a genome with four linking groups, each with 100 cM of size. The linking groups present 51, 21, 11 and 6 markers, with a distance of 2, 5, 10 and 20 cM between the adjacent marks, respectively, providing different degrees of saturation. The Gibbs sampler, on the other hand, was used for the achievement of the estimates of the adaptability and stability parameters of the model proposed by Finlay and Wilkinson (1963), through the Bayesian inference. The data of the productivity averages of five genotypes evaluated in nine environments were used, come from essays in randomized blocks with four replications. In all the applications, the algorithms were computationally viable and achieved satisfactory results.Universidade Federal de ViçosaUniversidade Federal de ViçosaBREstatística Aplicada e BiometriaMestrado em Estatística Aplicada e BiometriaUFVhttp://lattes.cnpq.br/6544887498494945Cecon, Paulo Robertohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5Peternelli, Luiz Alexandrehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7Cruz, Cosme Damiãohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6Ferreira, Adésiohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777896Y8Viana, José Marcelo Sorianohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786170D5Nascimento, Moysés2015-03-26T13:32:07Z2009-08-062015-03-26T13:32:07Z2009-02-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfNASCIMENTO, Moysés. The use of Monte Carlo simulation via Markov chains in genetic breeding. 2009. 111 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2009.http://locus.ufv.br/handle/123456789/4022porinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2016-04-10T02:17:07Zoai:locus.ufv.br:123456789/4022Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-10T02:17:07LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genético
The use of Monte Carlo simulation via Markov chains in genetic breeding
title O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genético
spellingShingle O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genético
Nascimento, Moysés
Simulação estocástica
MCMC
Estatística genômica
Inferência bayesiana
Stochastic simulation
MCMC
Genomic statistics
Bayesian inference
CNPQ::CIENCIAS AGRARIAS
title_short O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genético
title_full O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genético
title_fullStr O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genético
title_full_unstemmed O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genético
title_sort O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genético
author Nascimento, Moysés
author_facet Nascimento, Moysés
author_role author
dc.contributor.none.fl_str_mv http://lattes.cnpq.br/6544887498494945
Cecon, Paulo Roberto
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5
Peternelli, Luiz Alexandre
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7
Cruz, Cosme Damião
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6
Ferreira, Adésio
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777896Y8
Viana, José Marcelo Soriano
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786170D5
dc.contributor.author.fl_str_mv Nascimento, Moysés
dc.subject.por.fl_str_mv Simulação estocástica
MCMC
Estatística genômica
Inferência bayesiana
Stochastic simulation
MCMC
Genomic statistics
Bayesian inference
CNPQ::CIENCIAS AGRARIAS
topic Simulação estocástica
MCMC
Estatística genômica
Inferência bayesiana
Stochastic simulation
MCMC
Genomic statistics
Bayesian inference
CNPQ::CIENCIAS AGRARIAS
description Este trabalho teve por objetivo fornecer um referencial teórico e aplicado sobre os principais métodos de simulação de Monte Carlo via cadeias de Markov (MCMC), buscando dar ênfase em aplicações no melhoramento genético. Assim, apresentaram-se os algoritmos de Metropolis-Hastings, simulated annealing e amostrador de Gibbs. Os aspectos teóricos dos métodos foram abordados através de uma discussão detalhada de seus fundamentos com base na teoria de cadeias de Markov. Além da discussão teórica, aplicações concretas foram desenvolvidas. O algoritmo de Metropolis- Hastings foi utilizado para obter estimativas das freqüências de recombinação entre pares de marcadores de uma população F2, de natureza codominante, constituída de 200 indivíduos. O simulated annealing foi aplicado no estabelecimento da melhor ordem de ligação na construção de mapas genéticos de três populações F2 simuladas, com marcadores de natureza codominantes, de tamanhos 50, 100 e 200 indivíduos respectivamente. Para cada população foi estabelecido um genoma com quatro grupos de ligação, com 100 cM de tamanho cada. Os grupos de ligação possuem 51, 21, 11 e 6 marcadores, com uma distância de 2, 5, 10 e 20 cM entre marcas adjacentes respectivamente, ocasionando diferentes graus de saturação. Já o amostrador de Gibbs foi utilizado na obtenção das estimativas dos parâmetros de adaptabilidade e estabilidade, do modelo proposto por Finlay e Wilkinson (1963), através da inferência bayesiana. Foram utilizados os dados de médias de rendimento de cinco genótipos avaliados em nove ambientes, provenientes de ensaios em blocos ao acaso com quatro repetições. Em todas as aplicações os algoritmos se mostraram computacionalmente viáveis e obtiveram resultados satisfatórios.
publishDate 2009
dc.date.none.fl_str_mv 2009-08-06
2009-02-20
2015-03-26T13:32:07Z
2015-03-26T13:32:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv NASCIMENTO, Moysés. The use of Monte Carlo simulation via Markov chains in genetic breeding. 2009. 111 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2009.
http://locus.ufv.br/handle/123456789/4022
identifier_str_mv NASCIMENTO, Moysés. The use of Monte Carlo simulation via Markov chains in genetic breeding. 2009. 111 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2009.
url http://locus.ufv.br/handle/123456789/4022
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
BR
Estatística Aplicada e Biometria
Mestrado em Estatística Aplicada e Biometria
UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa
BR
Estatística Aplicada e Biometria
Mestrado em Estatística Aplicada e Biometria
UFV
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1833927090431328256