Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Viçosa
Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://locus.ufv.br/handle/123456789/35028 https://doi.org/10.47328/ufvbbt.2025.829 |
Resumo: | The monitoring of agricultural areas is essential to ensure a safe environment, avoid economic losses, and prevent risks to infrastructure and human safety. Effective monitoring can detect lost animals, unauthorized human access, wild animal intrusions, among other issues. Artificial Intelligence (AI) is a powerful tool to automate this process through the processing of images captured from ground or aerial perspectives. However, supervised models require large volumes of labeled data to achieve good performance, and although data exists, most of it is private and inaccessible to the public or available in limited quantity. The available datasets are generally unlabeled or do not cover domain-specific scenarios, such as rural and farm environments. In addition, data collection in agricultural settings presents further challenges, such as the need for drones or other remote sensing technologies, making the process more expensive and complex. Finally, the annotation stage is also a bottleneck, as beyond collecting images, intensive manual work is required to label them, increasing both cost and time. In this context, we propose to address the problem of data scarcity and annotation complexity from two perspectives, aiming to mitigate the bottleneck of training AI models when only a small amount of labeled data is available. The first study focuses on aerial monitoring using images collected by Unmanned Aerial Vehicles (UAVs) on farms for the task of semantic segmentation. Semantic segmentation brings significant benefits to agricultural monitoring by automatically identifying and differentiating important elements of the rural environment, such as vegetation areas, bodies of water, and buildings. By precisely mapping these elements, the technique enables the identification of risk situations for livestock and infrastructure, contributing to safer and more efficient farm management. Thus, we investigated pre-training strategies using synthetic data from the same domain and real data from slightly different domains. We then fine-tuned on the target dataset, and the quantitative and qualitative results demonstrated that pre- training with the synthetic dataset achieved better final performance, leading to an increase of 3.1 p.p. in IoU, 6.4 in F1-Score, and 7.5 in Recall compared to the cross- domain real-image pre-training strategy. In the second study, we focus on object detection using ground-level images similar to security camera footage. This task is important in agricultural monitoring because it allows automatic identification and localization of animals and people, supporting security, livestock management, and the tracking of activities on the farm. To address the data scarcity challenge in this scenario, we proposed a method to effectively use multiple datasets even when they do not share the same classes, ensuring comprehensive coverage of all required categories. The proposed SmartClass methodology achieved more robust and adaptable detection approaches suitable for agricultural environments, with significant increases in Recall, mAP50, and mAP50-95 metrics compared to models trained without the methodology, thus demonstrating improved efficiency and reliability of the model. Keywords: artificial intelligence; computer vision; farm monitoring. |
| id |
UFV_3b1dfc7965b9eaaabb3aaa7f4c649eb5 |
|---|---|
| oai_identifier_str |
oai:locus.ufv.br:123456789/35028 |
| network_acronym_str |
UFV |
| network_name_str |
LOCUS Repositório Institucional da UFV |
| repository_id_str |
|
| spelling |
Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problemMétodos de visão computacional para monitoramento de fazendas aéreo e terrestre: abordando o problema da escassez de dados rotuladosInteligência artificialVisão por computadorProcessamento de imagensFazendasCiência da ComputaçãoThe monitoring of agricultural areas is essential to ensure a safe environment, avoid economic losses, and prevent risks to infrastructure and human safety. Effective monitoring can detect lost animals, unauthorized human access, wild animal intrusions, among other issues. Artificial Intelligence (AI) is a powerful tool to automate this process through the processing of images captured from ground or aerial perspectives. However, supervised models require large volumes of labeled data to achieve good performance, and although data exists, most of it is private and inaccessible to the public or available in limited quantity. The available datasets are generally unlabeled or do not cover domain-specific scenarios, such as rural and farm environments. In addition, data collection in agricultural settings presents further challenges, such as the need for drones or other remote sensing technologies, making the process more expensive and complex. Finally, the annotation stage is also a bottleneck, as beyond collecting images, intensive manual work is required to label them, increasing both cost and time. In this context, we propose to address the problem of data scarcity and annotation complexity from two perspectives, aiming to mitigate the bottleneck of training AI models when only a small amount of labeled data is available. The first study focuses on aerial monitoring using images collected by Unmanned Aerial Vehicles (UAVs) on farms for the task of semantic segmentation. Semantic segmentation brings significant benefits to agricultural monitoring by automatically identifying and differentiating important elements of the rural environment, such as vegetation areas, bodies of water, and buildings. By precisely mapping these elements, the technique enables the identification of risk situations for livestock and infrastructure, contributing to safer and more efficient farm management. Thus, we investigated pre-training strategies using synthetic data from the same domain and real data from slightly different domains. We then fine-tuned on the target dataset, and the quantitative and qualitative results demonstrated that pre- training with the synthetic dataset achieved better final performance, leading to an increase of 3.1 p.p. in IoU, 6.4 in F1-Score, and 7.5 in Recall compared to the cross- domain real-image pre-training strategy. In the second study, we focus on object detection using ground-level images similar to security camera footage. This task is important in agricultural monitoring because it allows automatic identification and localization of animals and people, supporting security, livestock management, and the tracking of activities on the farm. To address the data scarcity challenge in this scenario, we proposed a method to effectively use multiple datasets even when they do not share the same classes, ensuring comprehensive coverage of all required categories. The proposed SmartClass methodology achieved more robust and adaptable detection approaches suitable for agricultural environments, with significant increases in Recall, mAP50, and mAP50-95 metrics compared to models trained without the methodology, thus demonstrating improved efficiency and reliability of the model. Keywords: artificial intelligence; computer vision; farm monitoring.O monitoramento de áreas agrícolas é essencial para manter o ambiente seguro, evitar perdas econômicas e prevenir problemas com a integridade física dos locais e das pessoas. Um bom monitoramento pode detectar animais perdidos, entradas humanas não autorizadas, invasões de animais selvagens, dentre outros problemas. A Inteligência Artificial (IA) é uma grande aliada para automatizar esse processo por meio de processamento de imagens capturadas, sejam imagens terrestres ou aéreas. No entanto, modelos supervisionados requerem grandes volumes de dados rotulados para alcançar bom desempenho, e, apesar de existirem dados, a maior parte deles são privados e inacessível ao público ou em quantidade reduzida. Os conjuntos de dados disponíveis geralmente não são anotados ou não contemplam domínios específicos, como ambientes rurais e fazendas. Além disso, a coleta de dados em cenários agrícolas apresenta desafios adicionais, como a necessidade de uso de drones ou outras tecnologias de sensoriamento, o que torna o processo mais caro e complexo. Por fim, a etapa de rotulagem também representa um gargalo, pois além da coleta das imagens, é necessário um trabalho manual intensivo para anotá- las, elevando ainda mais o custo e o tempo necessários. Pensando nisso, propomos abordar o problema da escassez de dados e da dificuldade do processo de anotação com duas vertentes a fim de lidar com o gargalo de treinar modelos de IA quando existe um número baixo de dados rotulados. O primeiro estudo foca no monitoramento aéreo com imagens coletadas por Veículos Aéreos não Tripulados (VANT's) em fazendas na tarefa de segmentação semântica. A tarefa de segmentação semântica traz grandes benefícios ao monitoramento agrícola, pois permite identificar e diferenciar automaticamente elementos importantes do ambiente rural, como áreas de vegetação, corpos d’água e construções. Ao mapear com precisão esses elementos, a técnica possibilita a identificação de situações de risco ao gado e à infraestrutura, contribuindo para uma gestão mais segura e eficiente da fazenda. Assim, investigamos estratégias de pré-treinamento usando dados sintéticos no mesmo domínio e também dados reais em domínios ligeiramente diferentes. Em seguida realizamos ajuste fino no conjunto de dados alvo e os resultados quantitativos e qualitativos demonstraram que o pré-treinamento usando o conjunto de dados sintéticos teve melhor desempenho no treinamento final, levando a um aumento de 3,1 p.p. em IoU, 6,4 em F1-Score e 7,5 em Recall quando comparado à estratégia de pré-treinamento com imagens reais em domínio cruzado. Para o segundo estudo, focamos na detecção de objetos com imagens terrestres, semelhantes a imagens de câmeras de segurança. Essa tarefa é importante no monitoramento agrícola porque permite identificar e localizar automaticamente animais e pessoas, auxiliando na segurança, no manejo do gado e no acompanhamento das atividades na fazenda. Neste caso, para tratar o gargalo da falta de dados, propusemos um método para utilizar efetivamente vários conjuntos de dados, mesmo quando eles não têm as mesmas classes, garantindo uma cobertura abrangente de todas as categorias necessárias. A metodologia SmartClass proposta alcançou abordagens de detecção mais robustas e adaptáveis, adequadas para ambientes agrícolas, com aumentos consideráveis nas métricas de Recall, mAP50 e mAP50-95 em comparação com modelos treinados sem a metodologia, demonstrando assim um ganho na eficiencia e confiabilidade no modelo. Palavras-chave: inteligência artificial; visão computacional; monitoramento de fazendas.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Universidade Federal de ViçosaCiência da ComputaçãoSilva, Michel Melo dahttp://lattes.cnpq.br/3028081422884505Gomes, Thiago LuangeFerreira, Juliana Quintiliano de Oliveira2025-12-22T15:43:25Z2025-11-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFERREIRA, Juliana Quintiliano de Oliveira. Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem. 2025. 90 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Viçosa, Viçosa. 2025.https://locus.ufv.br/handle/123456789/35028https://doi.org/10.47328/ufvbbt.2025.829enginfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2025-12-23T06:02:03Zoai:locus.ufv.br:123456789/35028Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452025-12-23T06:02:03LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
| dc.title.none.fl_str_mv |
Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem Métodos de visão computacional para monitoramento de fazendas aéreo e terrestre: abordando o problema da escassez de dados rotulados |
| title |
Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem |
| spellingShingle |
Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem Ferreira, Juliana Quintiliano de Oliveira Inteligência artificial Visão por computador Processamento de imagens Fazendas Ciência da Computação |
| title_short |
Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem |
| title_full |
Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem |
| title_fullStr |
Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem |
| title_full_unstemmed |
Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem |
| title_sort |
Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem |
| author |
Ferreira, Juliana Quintiliano de Oliveira |
| author_facet |
Ferreira, Juliana Quintiliano de Oliveira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Silva, Michel Melo da http://lattes.cnpq.br/3028081422884505 Gomes, Thiago Luange |
| dc.contributor.author.fl_str_mv |
Ferreira, Juliana Quintiliano de Oliveira |
| dc.subject.por.fl_str_mv |
Inteligência artificial Visão por computador Processamento de imagens Fazendas Ciência da Computação |
| topic |
Inteligência artificial Visão por computador Processamento de imagens Fazendas Ciência da Computação |
| description |
The monitoring of agricultural areas is essential to ensure a safe environment, avoid economic losses, and prevent risks to infrastructure and human safety. Effective monitoring can detect lost animals, unauthorized human access, wild animal intrusions, among other issues. Artificial Intelligence (AI) is a powerful tool to automate this process through the processing of images captured from ground or aerial perspectives. However, supervised models require large volumes of labeled data to achieve good performance, and although data exists, most of it is private and inaccessible to the public or available in limited quantity. The available datasets are generally unlabeled or do not cover domain-specific scenarios, such as rural and farm environments. In addition, data collection in agricultural settings presents further challenges, such as the need for drones or other remote sensing technologies, making the process more expensive and complex. Finally, the annotation stage is also a bottleneck, as beyond collecting images, intensive manual work is required to label them, increasing both cost and time. In this context, we propose to address the problem of data scarcity and annotation complexity from two perspectives, aiming to mitigate the bottleneck of training AI models when only a small amount of labeled data is available. The first study focuses on aerial monitoring using images collected by Unmanned Aerial Vehicles (UAVs) on farms for the task of semantic segmentation. Semantic segmentation brings significant benefits to agricultural monitoring by automatically identifying and differentiating important elements of the rural environment, such as vegetation areas, bodies of water, and buildings. By precisely mapping these elements, the technique enables the identification of risk situations for livestock and infrastructure, contributing to safer and more efficient farm management. Thus, we investigated pre-training strategies using synthetic data from the same domain and real data from slightly different domains. We then fine-tuned on the target dataset, and the quantitative and qualitative results demonstrated that pre- training with the synthetic dataset achieved better final performance, leading to an increase of 3.1 p.p. in IoU, 6.4 in F1-Score, and 7.5 in Recall compared to the cross- domain real-image pre-training strategy. In the second study, we focus on object detection using ground-level images similar to security camera footage. This task is important in agricultural monitoring because it allows automatic identification and localization of animals and people, supporting security, livestock management, and the tracking of activities on the farm. To address the data scarcity challenge in this scenario, we proposed a method to effectively use multiple datasets even when they do not share the same classes, ensuring comprehensive coverage of all required categories. The proposed SmartClass methodology achieved more robust and adaptable detection approaches suitable for agricultural environments, with significant increases in Recall, mAP50, and mAP50-95 metrics compared to models trained without the methodology, thus demonstrating improved efficiency and reliability of the model. Keywords: artificial intelligence; computer vision; farm monitoring. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12-22T15:43:25Z 2025-11-24 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
FERREIRA, Juliana Quintiliano de Oliveira. Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem. 2025. 90 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Viçosa, Viçosa. 2025. https://locus.ufv.br/handle/123456789/35028 https://doi.org/10.47328/ufvbbt.2025.829 |
| identifier_str_mv |
FERREIRA, Juliana Quintiliano de Oliveira. Computer vision methods for aerial and ground-based farm monitoring: addressing the labeled data scarcity problem. 2025. 90 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Viçosa, Viçosa. 2025. |
| url |
https://locus.ufv.br/handle/123456789/35028 https://doi.org/10.47328/ufvbbt.2025.829 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa Ciência da Computação |
| publisher.none.fl_str_mv |
Universidade Federal de Viçosa Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
| instname_str |
Universidade Federal de Viçosa (UFV) |
| instacron_str |
UFV |
| institution |
UFV |
| reponame_str |
LOCUS Repositório Institucional da UFV |
| collection |
LOCUS Repositório Institucional da UFV |
| repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
| repository.mail.fl_str_mv |
fabiojreis@ufv.br |
| _version_ |
1855045551218753536 |