Revegetação de Áreas de Mineração com Presença de Substratos Sulfetados

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Silva, Silmara Costa
Orientador(a): Dias, Luiz Eduardo lattes
Banca de defesa: Abrahão, Walter Antônio Pereira lattes, Azevedo, Roberto Francisco de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Mestrado em Solos e Nutrição de Plantas
Departamento: Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://locus.ufv.br/handle/123456789/5511
Resumo: The constant concern about the contamination of mineral exploration areas and pressure from society and environmental agencies promotes the search for efficient techniques for environmental remediation of these sites. The extraction of certain minerals such as gold may be associated with the generation of acid mine drainage, promoting the contamination of adjacent areas, than recovery plans more complex and costly are necessary. Moreover, it is notable the occurrence of mobilizing heavy metals and metalloids such as arsenic (As) resulting from acid mine drainage. Since the techniques of reclamation of mining are usually related to revegetation, this study aimed to evaluate different materials and cover forms of gold exploration sulfide substrate remaining in order to provide conditions for the establishment and growth of vegetation. The experiment was conducted in field with thirteen treatments in a factorial (1 x 1 x 1) + (2 x 3 x 2), with a model of three layers above the sulfide substrate slightly weathered (B2). The first, called capillary breaking layer (CQC), which has the function of preventing the rise of water by capillarity, was composed of crushed limestone or laterite. The second, called sealant layer (CS), which has the function of minimizing the drainage of water and the gas stream, when present, consisted of soil (A and B horizons of an Oxisol LVA) or very weathered sulphide substrate (B1). The last layer, called coverage layer (CC), whose function is to support the growth of plants, consisted of soil or B1. The species used for revegetation were Melinis minutiflora P. Beauv (fat grass), Stizolobium aterrimum Piper & Tracy (velvet bean), Lolium multiflorum Lam (ryegrass), Crotalaria spectabilis Roth. (crotalaria) and Stylosanthes spp. Stylosanthes capitata Vogel and S. macrocephala M. B. Ferr. et S. Costa (estilosante). It was analyzed the chemical, physical and mineralogical characteristics of these materials five months after planting, and evaluation of microbial activity and soil organic matter (MOS) ten and thirteen months after planting. We also evaluated the dry biomass and foliar contents of arsenic per treatment. The soil is very clayey (72 % clay), while the substrate B1 has silty loam texture (65 % silt). The moisture of the materials in CC averaged 0.11 kg kg-1 for soil and 0.03 kg kg-1 for substrate B1 (dry season), and 0.30 kg kg-1 for soil and 0.06 kg kg-1 for B1 (rainy season). After thirteen months, treatments that had the laterite CQC produced on average 0.98 t ha-1 (p < 0.01) more plant material than treatments containing crushed limestone, and foliar contents of As average in this treatment presented 6.12 mg kg-1 (p < 0.05) more than those which had laterite in CQC. The difference of biomass produced for treatments with soil or B1 in CS was significant only for treatments with crushed limestone in CQC. Treatments that had soil in CS produced on average 5.16 t ha-1 (p < 0.01) more biomass than those with B1 in CS. The average arsenic concentration available to the soil was significantly lower than that of the substrate B1. Thus, the presence of soil in CC caused the biomass significantly higher than in treatments with B1. The microbial biomass carbon (BMS-C) was significantly higher in the plots that received land in CC relative to B1, indicating lower environmental sustainability when the latter material is used as cover. The microbial quocient (qCO2), a relation between the amounts of CO2 generated per unit of microbial biomass per unit of time, showed high values, which are relatively higher for B1. Among the species used, the fat grass and crotalaria were more tolerant to B1 conditions and ryegrass was not established in this material. The use of soil as a constituent of the sealant layer and the cover layer resulted in better conditions for plant establishment. However, depending on the combination of layers, it is possible to use B1 in CC and CS, exerting less pressure on the use of soils in other areas, thus representing a considerable cost reduction of recovery area.
id UFV_ee70bc7090d2b8a7efa1e99e9d968e02
oai_identifier_str oai:locus.ufv.br:123456789/5511
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str
spelling Silva, Silmara Costahttp://lattes.cnpq.br/6091472455741403Assis, Igor Rodrigues dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4778546P9Dias, Luiz Eduardohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788182U8Abrahão, Walter Antônio Pereirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798343H6Azevedo, Roberto Francisco dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727725A72015-03-26T13:53:29Z2013-11-192015-03-26T13:53:29Z2013-03-22SILVA, Silmara Costa. Revegetation of Mining Areas with Presence of Sulphide Substrates. 2013. 100 f. Dissertação (Mestrado em Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,) - Universidade Federal de Viçosa, Viçosa, 2013.http://locus.ufv.br/handle/123456789/5511The constant concern about the contamination of mineral exploration areas and pressure from society and environmental agencies promotes the search for efficient techniques for environmental remediation of these sites. The extraction of certain minerals such as gold may be associated with the generation of acid mine drainage, promoting the contamination of adjacent areas, than recovery plans more complex and costly are necessary. Moreover, it is notable the occurrence of mobilizing heavy metals and metalloids such as arsenic (As) resulting from acid mine drainage. Since the techniques of reclamation of mining are usually related to revegetation, this study aimed to evaluate different materials and cover forms of gold exploration sulfide substrate remaining in order to provide conditions for the establishment and growth of vegetation. The experiment was conducted in field with thirteen treatments in a factorial (1 x 1 x 1) + (2 x 3 x 2), with a model of three layers above the sulfide substrate slightly weathered (B2). The first, called capillary breaking layer (CQC), which has the function of preventing the rise of water by capillarity, was composed of crushed limestone or laterite. The second, called sealant layer (CS), which has the function of minimizing the drainage of water and the gas stream, when present, consisted of soil (A and B horizons of an Oxisol LVA) or very weathered sulphide substrate (B1). The last layer, called coverage layer (CC), whose function is to support the growth of plants, consisted of soil or B1. The species used for revegetation were Melinis minutiflora P. Beauv (fat grass), Stizolobium aterrimum Piper & Tracy (velvet bean), Lolium multiflorum Lam (ryegrass), Crotalaria spectabilis Roth. (crotalaria) and Stylosanthes spp. Stylosanthes capitata Vogel and S. macrocephala M. B. Ferr. et S. Costa (estilosante). It was analyzed the chemical, physical and mineralogical characteristics of these materials five months after planting, and evaluation of microbial activity and soil organic matter (MOS) ten and thirteen months after planting. We also evaluated the dry biomass and foliar contents of arsenic per treatment. The soil is very clayey (72 % clay), while the substrate B1 has silty loam texture (65 % silt). The moisture of the materials in CC averaged 0.11 kg kg-1 for soil and 0.03 kg kg-1 for substrate B1 (dry season), and 0.30 kg kg-1 for soil and 0.06 kg kg-1 for B1 (rainy season). After thirteen months, treatments that had the laterite CQC produced on average 0.98 t ha-1 (p < 0.01) more plant material than treatments containing crushed limestone, and foliar contents of As average in this treatment presented 6.12 mg kg-1 (p < 0.05) more than those which had laterite in CQC. The difference of biomass produced for treatments with soil or B1 in CS was significant only for treatments with crushed limestone in CQC. Treatments that had soil in CS produced on average 5.16 t ha-1 (p < 0.01) more biomass than those with B1 in CS. The average arsenic concentration available to the soil was significantly lower than that of the substrate B1. Thus, the presence of soil in CC caused the biomass significantly higher than in treatments with B1. The microbial biomass carbon (BMS-C) was significantly higher in the plots that received land in CC relative to B1, indicating lower environmental sustainability when the latter material is used as cover. The microbial quocient (qCO2), a relation between the amounts of CO2 generated per unit of microbial biomass per unit of time, showed high values, which are relatively higher for B1. Among the species used, the fat grass and crotalaria were more tolerant to B1 conditions and ryegrass was not established in this material. The use of soil as a constituent of the sealant layer and the cover layer resulted in better conditions for plant establishment. However, depending on the combination of layers, it is possible to use B1 in CC and CS, exerting less pressure on the use of soils in other areas, thus representing a considerable cost reduction of recovery area.A constante preocupação com a contaminação de áreas de exploração mineral e a pressão por parte da sociedade e de órgãos ambientais promove a busca por técnicas eficientes de recuperação ambiental destes locais. A extração de determinados minerais como ouro pode estar associada à geração de drenagem ácida, promovendo a contaminação de áreas adjacentes, sendo nessários planos de recuperação mais complexos e de elevado custo. Além disso, é marcante a ocorrência de mobilização de metais pesados e metaloides, como arsênio (As) decorrentes da drenagem ácida. Uma vez que as técnicas de recuperação de áreas degradadas pela mineração normalmente estão relacionadas à revegetação, este trabalho teve como objetivo avaliar diferentes materiais e formas de cobertura de substrato sulfetado remanescente de exploração de ouro com a finalidade de fornecer condições para o estabelecimento e crescimento de vegetação. O experimento foi instalado em campo com treze tratamentos, em esquema fatorial (1 x 1 x 1) + (2 x 3 x 2), com um modelo de três camadas acima do substrato sulfetado pouco intemperizado (B2). A primeira, denominada camada de quebra de capilaridade (CQC), que possui a função de evitar a ascensão de água por capiliriade, foi constituida por brita calcária ou laterita. A segunda, denominada camada selante (CS), que possui a função de minimizar a drenagem de água e o fluxo de gases, quando presente, foi constituída por solo (horizontes A e B de um Latossolo vermelho amarelo LVA) ou substrato sulfetado muito intemperizado (B1). A última camada, denominada camada de cobertura (CC), cuja função é dar suporte ao crescimento das plantas, foi constituída de solo ou B1. As espécies utilizadas para a revegetação foram Melinis minutiflora P. Beauv (capim gordura), Stizolobium aterrimum Piper & Tracy (mucuna preta), Lolium multiflorum Lam. (azevém), Crotalaria spectabilis Roth. (crotalária) e Stylosanthes spp. Stylosanthes capitata Vogel e S. macrocephala M. B. Ferr. et S. Costa (estilosante). Realizou-se a caracterização química, física e mineralógica dos diferentes materiais aos cinco meses após o plantio; e avaliação da atividade microbiana e matéria orgânica do solo (MOS) dez e treze meses após o plantio. Foram avaliadas também matéria seca produzida e teores foliares de As por tratamento. O solo apresenta textura muito argilosa (72 % de argila), enquanto o substrato B1 possui textura franco siltosa (65 % de silte). A umidade dos materiais na CC foi em média de 0,11 kg kg-1 para o solo e 0,03 kg kg-1 para o substrato B1 (período seco), e de 0,30 kg kg-1 para o solo e 0,06 kg kg-1 para o B1 (período chuvoso). Após treze meses, tratamentos que apresentavam laterita na CQC produziram em média 0,98 t ha-1 (p < 0,01) a mais de material vegetal do que os tratamentos que continham brita calcária, e os teores foliares médios de As nos tratamentos com brita calcária na CQC apresentaram 6,12 mg kg-1 (p < 0,05) a mais do que naqueles que possuíam lateria na CQC. A diferença da biomassa produzida para os tratamentos com solo ou B1 na CS foi significativa apenas para tratamentos com brita calcária na CQC. Tratamentos que possuíam solo na CS produziram em média 5,16 t ha-1 (p < 0,01) a mais de biomassa do que aqueles que possuíam B1 na CS. A média dos teores disponíveis de arsênio para o solo foi significativamente menor do que para o substrato B1. Sendo assim, a presença de solo na CC ocasionou produção de biomassa significativamente maior do que nos tratamentos com B1 naquela camada. O carbono na biomassa microbiana (BMSC) foi significativamente maior nas parcelas que receberam solo na CC em relação ao B1. O quociente microbiano (qCO2), relação entre a quantidade de CO2 produzido por unidade de carbono da biomassa microbiana por unidade de tempo, apresentou valores altos, sendo estes relativamente maiores para o B1. Dentre as espécies utilizadas, o capim gordura e a crotalária se mostraram mais tolerantes às condições do B1 e o azevém não se estabeleceu neste material. O uso de solo como constituinte da camada selante e da camada de cobertura resultou em melhores condições para o estabelecimento das plantas. No entanto, dependendo da combinação das camadas, é possível a utilização de B1 nas CS e CC, exercendo menor pressão sobre o uso dos solos de outras áreas, representando assim, considerável redução de custo de recuperação da área.Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal de ViçosaMestrado em Solos e Nutrição de PlantasUFVBRFertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,Substratos SulfetadosPiritaRecuperação de áreas degradadasSulphide SubstratesReclamation of degraded areasCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLORevegetação de Áreas de Mineração com Presença de Substratos SulfetadosRevegetation of Mining Areas with Presence of Sulphide Substratesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf2042352https://locus.ufv.br//bitstream/123456789/5511/1/texto%20completo.pdf97a51bd9bf50c7c465e7720af7d5242bMD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain170414https://locus.ufv.br//bitstream/123456789/5511/2/texto%20completo.pdf.txt722de5c567fb731dd0591dfcf0ca6788MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3431https://locus.ufv.br//bitstream/123456789/5511/3/texto%20completo.pdf.jpg032fba67a3ac529d3790ede7b1903cc2MD53123456789/55112016-04-11 23:04:29.186oai:locus.ufv.br:123456789/5511Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-12T02:04:29LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Revegetação de Áreas de Mineração com Presença de Substratos Sulfetados
dc.title.alternative.eng.fl_str_mv Revegetation of Mining Areas with Presence of Sulphide Substrates
title Revegetação de Áreas de Mineração com Presença de Substratos Sulfetados
spellingShingle Revegetação de Áreas de Mineração com Presença de Substratos Sulfetados
Silva, Silmara Costa
Substratos Sulfetados
Pirita
Recuperação de áreas degradadas
Sulphide Substrates
Reclamation of degraded areas
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
title_short Revegetação de Áreas de Mineração com Presença de Substratos Sulfetados
title_full Revegetação de Áreas de Mineração com Presença de Substratos Sulfetados
title_fullStr Revegetação de Áreas de Mineração com Presença de Substratos Sulfetados
title_full_unstemmed Revegetação de Áreas de Mineração com Presença de Substratos Sulfetados
title_sort Revegetação de Áreas de Mineração com Presença de Substratos Sulfetados
author Silva, Silmara Costa
author_facet Silva, Silmara Costa
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/6091472455741403
dc.contributor.author.fl_str_mv Silva, Silmara Costa
dc.contributor.advisor-co1.fl_str_mv Assis, Igor Rodrigues de
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4778546P9
dc.contributor.advisor1.fl_str_mv Dias, Luiz Eduardo
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788182U8
dc.contributor.referee1.fl_str_mv Abrahão, Walter Antônio Pereira
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798343H6
dc.contributor.referee2.fl_str_mv Azevedo, Roberto Francisco de
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727725A7
contributor_str_mv Assis, Igor Rodrigues de
Dias, Luiz Eduardo
Abrahão, Walter Antônio Pereira
Azevedo, Roberto Francisco de
dc.subject.por.fl_str_mv Substratos Sulfetados
Pirita
Recuperação de áreas degradadas
topic Substratos Sulfetados
Pirita
Recuperação de áreas degradadas
Sulphide Substrates
Reclamation of degraded areas
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
dc.subject.eng.fl_str_mv Sulphide Substrates
Reclamation of degraded areas
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
description The constant concern about the contamination of mineral exploration areas and pressure from society and environmental agencies promotes the search for efficient techniques for environmental remediation of these sites. The extraction of certain minerals such as gold may be associated with the generation of acid mine drainage, promoting the contamination of adjacent areas, than recovery plans more complex and costly are necessary. Moreover, it is notable the occurrence of mobilizing heavy metals and metalloids such as arsenic (As) resulting from acid mine drainage. Since the techniques of reclamation of mining are usually related to revegetation, this study aimed to evaluate different materials and cover forms of gold exploration sulfide substrate remaining in order to provide conditions for the establishment and growth of vegetation. The experiment was conducted in field with thirteen treatments in a factorial (1 x 1 x 1) + (2 x 3 x 2), with a model of three layers above the sulfide substrate slightly weathered (B2). The first, called capillary breaking layer (CQC), which has the function of preventing the rise of water by capillarity, was composed of crushed limestone or laterite. The second, called sealant layer (CS), which has the function of minimizing the drainage of water and the gas stream, when present, consisted of soil (A and B horizons of an Oxisol LVA) or very weathered sulphide substrate (B1). The last layer, called coverage layer (CC), whose function is to support the growth of plants, consisted of soil or B1. The species used for revegetation were Melinis minutiflora P. Beauv (fat grass), Stizolobium aterrimum Piper & Tracy (velvet bean), Lolium multiflorum Lam (ryegrass), Crotalaria spectabilis Roth. (crotalaria) and Stylosanthes spp. Stylosanthes capitata Vogel and S. macrocephala M. B. Ferr. et S. Costa (estilosante). It was analyzed the chemical, physical and mineralogical characteristics of these materials five months after planting, and evaluation of microbial activity and soil organic matter (MOS) ten and thirteen months after planting. We also evaluated the dry biomass and foliar contents of arsenic per treatment. The soil is very clayey (72 % clay), while the substrate B1 has silty loam texture (65 % silt). The moisture of the materials in CC averaged 0.11 kg kg-1 for soil and 0.03 kg kg-1 for substrate B1 (dry season), and 0.30 kg kg-1 for soil and 0.06 kg kg-1 for B1 (rainy season). After thirteen months, treatments that had the laterite CQC produced on average 0.98 t ha-1 (p < 0.01) more plant material than treatments containing crushed limestone, and foliar contents of As average in this treatment presented 6.12 mg kg-1 (p < 0.05) more than those which had laterite in CQC. The difference of biomass produced for treatments with soil or B1 in CS was significant only for treatments with crushed limestone in CQC. Treatments that had soil in CS produced on average 5.16 t ha-1 (p < 0.01) more biomass than those with B1 in CS. The average arsenic concentration available to the soil was significantly lower than that of the substrate B1. Thus, the presence of soil in CC caused the biomass significantly higher than in treatments with B1. The microbial biomass carbon (BMS-C) was significantly higher in the plots that received land in CC relative to B1, indicating lower environmental sustainability when the latter material is used as cover. The microbial quocient (qCO2), a relation between the amounts of CO2 generated per unit of microbial biomass per unit of time, showed high values, which are relatively higher for B1. Among the species used, the fat grass and crotalaria were more tolerant to B1 conditions and ryegrass was not established in this material. The use of soil as a constituent of the sealant layer and the cover layer resulted in better conditions for plant establishment. However, depending on the combination of layers, it is possible to use B1 in CC and CS, exerting less pressure on the use of soils in other areas, thus representing a considerable cost reduction of recovery area.
publishDate 2013
dc.date.available.fl_str_mv 2013-11-19
2015-03-26T13:53:29Z
dc.date.issued.fl_str_mv 2013-03-22
dc.date.accessioned.fl_str_mv 2015-03-26T13:53:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Silmara Costa. Revegetation of Mining Areas with Presence of Sulphide Substrates. 2013. 100 f. Dissertação (Mestrado em Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,) - Universidade Federal de Viçosa, Viçosa, 2013.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/5511
identifier_str_mv SILVA, Silmara Costa. Revegetation of Mining Areas with Presence of Sulphide Substrates. 2013. 100 f. Dissertação (Mestrado em Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,) - Universidade Federal de Viçosa, Viçosa, 2013.
url http://locus.ufv.br/handle/123456789/5511
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Mestrado em Solos e Nutrição de Plantas
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/5511/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/5511/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/5511/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 97a51bd9bf50c7c465e7720af7d5242b
722de5c567fb731dd0591dfcf0ca6788
032fba67a3ac529d3790ede7b1903cc2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213736875196416