Biologia molecular da movimentação ortodôntica

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Massarelli, Eduardo Ernst lattes
Orientador(a): Ferreira, Flávio Vellini lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Cidade de São Paulo
Programa de Pós-Graduação: Programa de Pós-Graduação Mestrado em Odontologia
Departamento: Pós-Graduação
País: Brasil
Palavras-chave em Português:
OPG
Área do conhecimento CNPq:
Link de acesso: https://repositorio.cruzeirodosul.edu.br/handle/123456789/1192
Resumo: Na última década, a biologia molecular tem sido uma ferramenta de estudo cada vez mais presente na pesquisa ortodôntica. Estar atento ao novo conhecimento que emerge desvendando as bases moleculares da movimentação ortodôntica é um pré-requisito para o ortodontista que almeja a excelência em sua prática clínica. O foco desse estudo restringe-se a três moléculas-chave, que regulam a diferenciação e ativação dos osteoclastos e, em última instância, a reabsorção óssea necessária para movimentação ortodôntica. São elas o Receptor Ativador do Fator Nuclear kappa β (RANK), o seu ligante (RANKL) e a Osteoprotegerina (OPG). O presente estudo teve por objetivo realizar um levantamento bibliográfico do papel dessas moléculas na movimentação ortodôntica, assim como das ferramentas que o ortodontista tem em mãos para influenciá-las e as terapias que surgem como possibilidades futuras de garantir ao seu paciente um tratamento ortodôntico cada vez mais eficaz e seguro. Através dos trabalhos científicos analisados, concluiu-se que, através da variação de direção, magnitude e duração da força ortodôntica, o ortodontista pode interferir no padrão de expressão de RANKL e OPG no ligamento periodontal. Não obstante, o uso do laser de baixa potência para aumentar a movimentação ortodôntica apresenta-se como uma terapia a ser utilizada em um futuro próximo, assim como a utilização de fármacos que garantirão uma melhor contenção pós-tratamento através da inibição da movimentação dentária.
id UNICSUL-1_19be5045b7e2a2eb109ee0824689adb4
oai_identifier_str oai:repositorio.cruzeirodosul.edu.br:123456789/1192
network_acronym_str UNICSUL-1
network_name_str Repositório Institucional da Universidade Cruzeiro do Sul
repository_id_str
spelling 2020-12-10T15:25:20Z2020-12-10T15:25:20Z2011-12-20MASSARELLI, Eduardo Ernst. Biologia molecular da movimentação ortodôntica. Orientador: Prof. Dr. Flávio Vellini Ferreira. 2011. 78f. Dissertação (Mestrado em Ortodontia) - Universidade Cidade de São Paulo. 2011.https://repositorio.cruzeirodosul.edu.br/handle/123456789/1192Na última década, a biologia molecular tem sido uma ferramenta de estudo cada vez mais presente na pesquisa ortodôntica. Estar atento ao novo conhecimento que emerge desvendando as bases moleculares da movimentação ortodôntica é um pré-requisito para o ortodontista que almeja a excelência em sua prática clínica. O foco desse estudo restringe-se a três moléculas-chave, que regulam a diferenciação e ativação dos osteoclastos e, em última instância, a reabsorção óssea necessária para movimentação ortodôntica. São elas o Receptor Ativador do Fator Nuclear kappa β (RANK), o seu ligante (RANKL) e a Osteoprotegerina (OPG). O presente estudo teve por objetivo realizar um levantamento bibliográfico do papel dessas moléculas na movimentação ortodôntica, assim como das ferramentas que o ortodontista tem em mãos para influenciá-las e as terapias que surgem como possibilidades futuras de garantir ao seu paciente um tratamento ortodôntico cada vez mais eficaz e seguro. Através dos trabalhos científicos analisados, concluiu-se que, através da variação de direção, magnitude e duração da força ortodôntica, o ortodontista pode interferir no padrão de expressão de RANKL e OPG no ligamento periodontal. Não obstante, o uso do laser de baixa potência para aumentar a movimentação ortodôntica apresenta-se como uma terapia a ser utilizada em um futuro próximo, assim como a utilização de fármacos que garantirão uma melhor contenção pós-tratamento através da inibição da movimentação dentária.In the last decade, molecular biology has been a study tool increasingly present in orthodontic research. The orthodontist who aspire excellence in their clinical practice must be aware of new knowledge that emerges revealing the molecular basis of orthodontic tooth movement. The focus of this study is three key molecules that regulate the differentiation and activation of osteoclasts and, ultimately, bone resorption witch is necessary for orthodontic movement. They are the Receptor Activator of Nuclear kappa β (RANK), its ligand (RANKL) and Osteoprotegerin (OPG). The aim of this study was to conduct a literature review of the role of these molecules in orthodontic movement, as well as the tools that the orthodontist has to influence it, nowadays or in the near future, to ensure his patient an orthodontic treatment more effective and safe. Through scientific analysis, it was concluded that, by changing the direction, magnitudes and duration of orthodontic force, the orthodontist can interfere with the expression pattern of RANKL and OPG in periodontal ligament. Nevertheless, the use low level laser therapy to increase orthodontic movement presents itself as a therapy to be used in the near future, as well as the drugs that ensure better containment post-treatment by inhibition of tooth movement.porUniversidade Cidade de São PauloPrograma de Pós-Graduação Mestrado em OdontologiaUNICIDBrasilPós-GraduaçãoODONTOLOGIABiologia MolecularRANKRANKLOPGMovimentação DentáriaOrtodontiaBiologia molecular da movimentação ortodônticainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisFerreira, Flávio Vellinihttp://lattes.cnpq.br/6828757753467788http://lattes.cnpq.br/658667239610390Massarelli, Eduardo ErnstAihara N, Yamaguchi M, Kasai K. Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci. 2006 Apr;21(1):24-33. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular Biology of the Cell, 5nd ed. Taylor and Francis; 2007. Altan BA, Sokucu O, Ozkut MM, Inan S. Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. LasersMed Sci. 2010 Oct 31 [Epub ahead of print]. Alves JB, Ferreira CL, Martins AF, Silva GA, Alves GD, Paulino TP, Ciancaglini P, Thedei G Jr, Napimoga MH. Local delivery of EGF-liposome mediated bone modeling in orthodontic tooth movement by increasing RANKL expression. Life Sci. 2009 Nov 4;85(19-20):693-9. Andrade I Jr, Taddei SR, Garlet GP, Garlet TP, Teixeira AL, Silva TA, Teixeira MM. CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res. 2009 Nov;88(11):1037-41. Baloul SS, Gerstenfeld LC, Morgan EF, Carvalho RS, Van Dyke TE, Kantarci A. Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Am J Orthod Dentofacial Orthop. 2011 Apr;139(4 Suppl):S83-101. Braga SMG, Taddei SRA, Andrade Jr. I, Queiroz-Júnior CM, Garlet GP, Repeke CE, Teixeira MM, da Silva TA. Effect of diabetes on orthodontic tooth movement in a mouse model. Eur J Oral Sci. 2011;119:7-14. Brooks PJ, Nilforoushan D, Manolson MF, Simmons CA, Gong SG. Molecular markers of early orthodontic tooth movement. Angle Orthod. 2009 Nov;79(6):1108-13. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med. 2004;35(2):117-20. Dunn MD, Park CH, Kostenuik PJ, Kapila S, Giannobile WV. Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone. 2007 Sep;41(3):446-55. Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res. 2008 Aug;11(3):143-55. Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 2007 Oct;115(5):355-62. Garlet TP, Coelho U, Repeke CE, Silva JS, Cunha Fde Q, Garlet GP. Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement. Cytokine. 2008 Jun;42(3):330-5. George A, Evans CA. Detection of root resorption using dentin and bone markers. Orthod Craniofac Res. 2009 Aug;12(3):229-35. Han G, Chen Y, Hou J, Liu C, Chen C, Zhuang J, Meng W. Effects of simvastatim on relapse and remodeling of periodontal tissues after tooth movment in rats. Am J Orthod Dentofacial Orthop 2010;138:550.e1-550.e7. Junqueira LCU, Carneiro J. Biologia Celular e Molecular, 8.a ed. Guanabara; 2005. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res. 2001 Mar;80(3):887-91. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res. 2002 Feb;17(2):210-20. Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res. 2004 Dec;83(12):920-5. Kanzaki H, Chiba M, Arai K, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther. 2006 Apr;13(8):678-85. ª Kanzaki H, Chiba M, Sato A, Miyagawa A, Arai K, Nukatsuka S, Mitani H. Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J Dent Res. 2006 May;85(5):457-62. b Kawasaki K, Takahashi T, Yamaguchi M, Kasai K. Effects of aging on RANKL and OPG levels in gingival crevicular fluid during orthodontic tooth movement. Orthod Craniofac Res. 2006 Aug;9(3):137-42. Keles A, Grunes B, Difuria C, Gagari E, Srinivasan V, Darendeliler MA, Muller R, Kent R Jr, Stashenko P. Inhibition of tooth movement by osteoprotegerin vs. pamidronate under conditions of constant orthodontic force. Eur J Oral Sci. 2007 Apr;115(2):131-6. Kim T, Handa A, Iida J, Yoshida S. RANKL expression in rat periodontal ligament subjected to a continuous orthodontic force. Arch Oral Biol. 2007 Mar;52(3):244-50. Kim SH, Kook YA, Jeong DM, Lee W, Chung KR, Nelson G. Clinical application of accelerated osteogenic orthodontics and partially osseointegrated mini-implants for minor tooth movement. Am J Orthod Dentofacial Orthop. 2009 Sep;136(3):431-9. Kook SH, Son YO, Choe Y, Kim JH, Jeon YM, Heo JS, Kim JG, Lee JC. Mechanical force augments the anti-osteoclastogenic potential of human gingival fibroblasts in vitro. J Periodontal Res. 2009 Jun;44(3):402-10. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 2006 Apr;129(4):469.e1-32. Li Y, Zheng W, Liu JS, Wang J, Yang P, Li ML, Zhao ZH. Expression of Osteoclastogenesis Inducers in a Tissue Model of Periodontal Ligament under Compression. J Dent Res. 2011 Oct 12 Jan;90(1):115-20. Lim HM, Lew KK, Tay DK. A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop. 1995 Dec;108(6):614-22. Low E, Zoellner H, Kharbanda OP, Darendeliler MA. Expression of mRNA for osteoprotegerin and receptor activator of nuclear factor kappa beta ligand (RANKL) during root resorption induced by the application of heavy orthodontic forces on rat molars. Am J Orthod Dentofacial Orthop. 2005 Oct;128(4):497-503. Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006 Apr;129(4):458-68. Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod. 2006 Jun;28(3):221-40. Epub 2006 May 10. Mitsuhashi M, Yamaguchi M, Kojima T, Nakajima R, Kasai K. Effects of HSP70 on the compression force-induced TNF-a and RANKL expression in human periodontal ligament cells. Inflamm Res. 2011 Feb;60(2):187-94. Nakajima R, Yamaguchi M, Kojima T, Takano M, Kasai K. Effects of compression force on fibroblast growth factor-2 and receptor activator of nuclear factor kappa B ligand production by periodontal ligament cells in vitro. J Periodontal Res. 2008 Apr;43(2):168-73. Nakano Y, Yamaguchi M, Fujita S, Asano M, Saito K, Kasai K. Expressions of RANKL/RANK and M-CSF/c-fms in root resorption lacunae in rat molar by heavy orthodontic force. Eur J Orthod. 2011 Aug;33(4):335-43. Nakao K, Goto T, Gunjigake KK, Konoo T, Kobayashi S, Yamaguchi K. Intermittent force induces high RANKL expression in human periodontal ligament cells. J Dent Res. 2007 Jul;86(7):623-8. Nishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K. Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofac Res. 2006 May;9(2):63-70. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, Mitani H. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2008 Apr;133(4):572-83. Ogasawara T, Yoshimine Y, Kiyoshima T, Kobayashi I, Matsuo K, Akamine A, Sakai H. In situ expression of RANKL, RANK, osteoprotegerin and cytokines in osteoclasts of rat periodontal tissue. J Periodontal Res. 2004 Feb;39(1):42-9. Okamoto A, Ohnishi T, Bandow K, Kakimoto K, Chiba N, Maeda A, Fukunaga T, Miyawaki S, Matsuguchi T. Reduction of orthodontic tooth movement by experimentally induced periodontal inflammation in mice. Eur J Oral Sci. 2009 Jun;117(3):238-47. Oshiro T, Shiotani A, Shibasaki Y, Sasaki T. Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. Anat Rec. 2002 Apr 1;266(4):218-25. Santos CF, Sakai VT, Machado MAAM, Schippers DN, Greene AS. Reverse transcription and polymerase chain reaction: principles and applications in dentistry. J Appl Oral Sci. 2004; 12(1):1-11. Shiotani A, Shibasaki Y, Sasaki T. Localization of receptor activator of NFkappaB ligand, RANKL, in periodontal tissues during experimental movement of rat molars. J Electron Microsc (Tokyo). 2001;50(4):365-9. Shiotani A, Takami M, Itoh K, Shibasaki Y, Sasaki T. Regulation of osteoclast differentiation and function by receptor activator of NFkB ligand and osteoprotegerin. Anat Rec. 2002 Oct 1;268(2):137-46. Tan L, Ren Y, Wang J, Jiang L, Cheng H, Sandham A, Zhao Z. Osteoprotegerin and ligand of receptor activator of nuclear factor kappaB expression in ovariectomized rats during tooth movement. Angle Orthod. 2009 Mar;79(2):292-8. Tang L, Lin Z, Li YM. Effects of different magnitudes of mechanical strain on Osteoblasts in vitro. Biochem Biophys Res Commun. 2006 May 26;344(1):122-8. Ten Cate, AR. Oral histology: development, structure and function, 7nd ed. Elservier: Mosby; 2007. Tortamano A, Lenzi DC, Haddad AC, Bottino MC, Dominguez GC, Vigorito JW. Low-level laser therapy for pain caused by placement of the first orthodontic archwire: a randomized clinical trial. Am J Orthod Dentofacial Orthop. 2009 Nov;136(5):662-7. Toygar HU, Kircelli BH, Bulut S, Sezgin N, Tasdelen B. Osteoprotegerin in gingival crevicular fluid under long-term continuous orthodontic force application. Angle Orthod. 2008 Nov;78(6):988-93. Tsuchiya M, Akiba Y, Takahashi I, Sasano Y, Kashiwazaki J, Tsuchiya S, Watanabe M. Comparison of expression patterns of cathepsin K and MMP-9 in odontoclasts and osteoclasts in physiological root resorption in the rat molar. Arch Histol Cytol. 2008 Sep;71(2):89-100. Turhani D, Scheriau M, Kapral D, Benesch T, Jonke E, Bantleon HP. Pain relief by single low-level laser irradiation in orthodontic patients undergoing fixed appliance therapy. Am J Orthod Dentofacial Orthop. 2006 Sep;130(3):371-7. Tyrovola JB, Perrea D, Halazonetis DJ, Dontas I, Vlachos IS, Makou M. Relation of soluble RANKL and osteoprotegerin levels in blood and gingival crevicular fluid to the degree of root resorption after orthodontic tooth movement. J Oral Sci. 2010;52(2):299-311. Wilcko MT, Wilcko WM, Pulver JJ, Bissada NF, Bouquot JE. Accelerated osteogenic orthodontics technique: a 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation. J Oral Maxillofac Surg. 2009 Oct;67(10):2149-59. Xie R, Kuijpers-Jagtman AM, Maltha JC. Osteoclast differentiation during experimental tooth movement by a short-term force application: an immunohistochemical study in rats. Acta Odontol Scand. 2008 Oct;66(5):314-20. Yamaguchi M, Aihara N, Kojima T, Kasai K. RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res. 2006 Aug;85(8):751-6. Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci. 2008 Jan;23(1):27-33. Yu H, de Vos P, Ren Y. Overexpression of osteoprotegerin promotes preosteoblast differentiation to mature osteoblasts. Angle Orthod. 2011 Jan;81(1):102-8. Zhou JP, Feng G, Zhou WW, Ren AS, Wu Y, Zhang DM, Dai HW. Expression of osteoprotegerin and receptor activator of nuclear factor κB ligand in root resorption induced by heavy force in rats. J Orofac Orthop. 2011 Nov;72(6):457-468. Zuo J, Archer LA, Cooper A, Johnson KL, Holliday LS, Dolce C. Nuclear factor kappaB p65 phosphorylation in orthodontic tooth movement. J Dent Res. 2007 Jun;86(6):556-9.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Cruzeiro do Sulinstname:Universidade Cruzeiro do Sul (UNICSUL)instacron:UNICSULORIGINALEduardo Ernst Massarelli.pdfEduardo Ernst Massarelli.pdfDissertaçãoapplication/pdf957553http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/1192/1/Eduardo%20Ernst%20Massarelli.pdf1db48ab73aa6bfa48776c70a3f87c319MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/1192/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/11922020-12-10 12:27:05.222oai:repositorio.cruzeirodosul.edu.br:123456789/1192Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPRIhttps://repositorio.cruzeirodosul.edu.br/oai/requestmary.pela@unicid.edu.bropendoar:2020-12-10T15:27:05Repositório Institucional da Universidade Cruzeiro do Sul - Universidade Cruzeiro do Sul (UNICSUL)false
dc.title.pt_BR.fl_str_mv Biologia molecular da movimentação ortodôntica
title Biologia molecular da movimentação ortodôntica
spellingShingle Biologia molecular da movimentação ortodôntica
Massarelli, Eduardo Ernst
ODONTOLOGIA
Biologia Molecular
RANK
RANKL
OPG
Movimentação Dentária
Ortodontia
title_short Biologia molecular da movimentação ortodôntica
title_full Biologia molecular da movimentação ortodôntica
title_fullStr Biologia molecular da movimentação ortodôntica
title_full_unstemmed Biologia molecular da movimentação ortodôntica
title_sort Biologia molecular da movimentação ortodôntica
author Massarelli, Eduardo Ernst
author_facet Massarelli, Eduardo Ernst
author_role author
dc.contributor.advisor1.fl_str_mv Ferreira, Flávio Vellini
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6828757753467788
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/658667239610390
dc.contributor.author.fl_str_mv Massarelli, Eduardo Ernst
contributor_str_mv Ferreira, Flávio Vellini
dc.subject.cnpq.fl_str_mv ODONTOLOGIA
topic ODONTOLOGIA
Biologia Molecular
RANK
RANKL
OPG
Movimentação Dentária
Ortodontia
dc.subject.por.fl_str_mv Biologia Molecular
RANK
RANKL
OPG
Movimentação Dentária
Ortodontia
description Na última década, a biologia molecular tem sido uma ferramenta de estudo cada vez mais presente na pesquisa ortodôntica. Estar atento ao novo conhecimento que emerge desvendando as bases moleculares da movimentação ortodôntica é um pré-requisito para o ortodontista que almeja a excelência em sua prática clínica. O foco desse estudo restringe-se a três moléculas-chave, que regulam a diferenciação e ativação dos osteoclastos e, em última instância, a reabsorção óssea necessária para movimentação ortodôntica. São elas o Receptor Ativador do Fator Nuclear kappa β (RANK), o seu ligante (RANKL) e a Osteoprotegerina (OPG). O presente estudo teve por objetivo realizar um levantamento bibliográfico do papel dessas moléculas na movimentação ortodôntica, assim como das ferramentas que o ortodontista tem em mãos para influenciá-las e as terapias que surgem como possibilidades futuras de garantir ao seu paciente um tratamento ortodôntico cada vez mais eficaz e seguro. Através dos trabalhos científicos analisados, concluiu-se que, através da variação de direção, magnitude e duração da força ortodôntica, o ortodontista pode interferir no padrão de expressão de RANKL e OPG no ligamento periodontal. Não obstante, o uso do laser de baixa potência para aumentar a movimentação ortodôntica apresenta-se como uma terapia a ser utilizada em um futuro próximo, assim como a utilização de fármacos que garantirão uma melhor contenção pós-tratamento através da inibição da movimentação dentária.
publishDate 2011
dc.date.issued.fl_str_mv 2011-12-20
dc.date.accessioned.fl_str_mv 2020-12-10T15:25:20Z
dc.date.available.fl_str_mv 2020-12-10T15:25:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MASSARELLI, Eduardo Ernst. Biologia molecular da movimentação ortodôntica. Orientador: Prof. Dr. Flávio Vellini Ferreira. 2011. 78f. Dissertação (Mestrado em Ortodontia) - Universidade Cidade de São Paulo. 2011.
dc.identifier.uri.fl_str_mv https://repositorio.cruzeirodosul.edu.br/handle/123456789/1192
identifier_str_mv MASSARELLI, Eduardo Ernst. Biologia molecular da movimentação ortodôntica. Orientador: Prof. Dr. Flávio Vellini Ferreira. 2011. 78f. Dissertação (Mestrado em Ortodontia) - Universidade Cidade de São Paulo. 2011.
url https://repositorio.cruzeirodosul.edu.br/handle/123456789/1192
dc.language.iso.fl_str_mv por
language por
dc.relation.references.pt_BR.fl_str_mv Aihara N, Yamaguchi M, Kasai K. Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci. 2006 Apr;21(1):24-33. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular Biology of the Cell, 5nd ed. Taylor and Francis; 2007. Altan BA, Sokucu O, Ozkut MM, Inan S. Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. LasersMed Sci. 2010 Oct 31 [Epub ahead of print]. Alves JB, Ferreira CL, Martins AF, Silva GA, Alves GD, Paulino TP, Ciancaglini P, Thedei G Jr, Napimoga MH. Local delivery of EGF-liposome mediated bone modeling in orthodontic tooth movement by increasing RANKL expression. Life Sci. 2009 Nov 4;85(19-20):693-9. Andrade I Jr, Taddei SR, Garlet GP, Garlet TP, Teixeira AL, Silva TA, Teixeira MM. CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res. 2009 Nov;88(11):1037-41. Baloul SS, Gerstenfeld LC, Morgan EF, Carvalho RS, Van Dyke TE, Kantarci A. Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Am J Orthod Dentofacial Orthop. 2011 Apr;139(4 Suppl):S83-101. Braga SMG, Taddei SRA, Andrade Jr. I, Queiroz-Júnior CM, Garlet GP, Repeke CE, Teixeira MM, da Silva TA. Effect of diabetes on orthodontic tooth movement in a mouse model. Eur J Oral Sci. 2011;119:7-14. Brooks PJ, Nilforoushan D, Manolson MF, Simmons CA, Gong SG. Molecular markers of early orthodontic tooth movement. Angle Orthod. 2009 Nov;79(6):1108-13. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med. 2004;35(2):117-20. Dunn MD, Park CH, Kostenuik PJ, Kapila S, Giannobile WV. Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone. 2007 Sep;41(3):446-55. Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res. 2008 Aug;11(3):143-55. Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 2007 Oct;115(5):355-62. Garlet TP, Coelho U, Repeke CE, Silva JS, Cunha Fde Q, Garlet GP. Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement. Cytokine. 2008 Jun;42(3):330-5. George A, Evans CA. Detection of root resorption using dentin and bone markers. Orthod Craniofac Res. 2009 Aug;12(3):229-35. Han G, Chen Y, Hou J, Liu C, Chen C, Zhuang J, Meng W. Effects of simvastatim on relapse and remodeling of periodontal tissues after tooth movment in rats. Am J Orthod Dentofacial Orthop 2010;138:550.e1-550.e7. Junqueira LCU, Carneiro J. Biologia Celular e Molecular, 8.a ed. Guanabara; 2005. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res. 2001 Mar;80(3):887-91. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res. 2002 Feb;17(2):210-20. Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res. 2004 Dec;83(12):920-5. Kanzaki H, Chiba M, Arai K, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther. 2006 Apr;13(8):678-85. ª Kanzaki H, Chiba M, Sato A, Miyagawa A, Arai K, Nukatsuka S, Mitani H. Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J Dent Res. 2006 May;85(5):457-62. b Kawasaki K, Takahashi T, Yamaguchi M, Kasai K. Effects of aging on RANKL and OPG levels in gingival crevicular fluid during orthodontic tooth movement. Orthod Craniofac Res. 2006 Aug;9(3):137-42. Keles A, Grunes B, Difuria C, Gagari E, Srinivasan V, Darendeliler MA, Muller R, Kent R Jr, Stashenko P. Inhibition of tooth movement by osteoprotegerin vs. pamidronate under conditions of constant orthodontic force. Eur J Oral Sci. 2007 Apr;115(2):131-6. Kim T, Handa A, Iida J, Yoshida S. RANKL expression in rat periodontal ligament subjected to a continuous orthodontic force. Arch Oral Biol. 2007 Mar;52(3):244-50. Kim SH, Kook YA, Jeong DM, Lee W, Chung KR, Nelson G. Clinical application of accelerated osteogenic orthodontics and partially osseointegrated mini-implants for minor tooth movement. Am J Orthod Dentofacial Orthop. 2009 Sep;136(3):431-9. Kook SH, Son YO, Choe Y, Kim JH, Jeon YM, Heo JS, Kim JG, Lee JC. Mechanical force augments the anti-osteoclastogenic potential of human gingival fibroblasts in vitro. J Periodontal Res. 2009 Jun;44(3):402-10. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 2006 Apr;129(4):469.e1-32. Li Y, Zheng W, Liu JS, Wang J, Yang P, Li ML, Zhao ZH. Expression of Osteoclastogenesis Inducers in a Tissue Model of Periodontal Ligament under Compression. J Dent Res. 2011 Oct 12 Jan;90(1):115-20. Lim HM, Lew KK, Tay DK. A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop. 1995 Dec;108(6):614-22. Low E, Zoellner H, Kharbanda OP, Darendeliler MA. Expression of mRNA for osteoprotegerin and receptor activator of nuclear factor kappa beta ligand (RANKL) during root resorption induced by the application of heavy orthodontic forces on rat molars. Am J Orthod Dentofacial Orthop. 2005 Oct;128(4):497-503. Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006 Apr;129(4):458-68. Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod. 2006 Jun;28(3):221-40. Epub 2006 May 10. Mitsuhashi M, Yamaguchi M, Kojima T, Nakajima R, Kasai K. Effects of HSP70 on the compression force-induced TNF-a and RANKL expression in human periodontal ligament cells. Inflamm Res. 2011 Feb;60(2):187-94. Nakajima R, Yamaguchi M, Kojima T, Takano M, Kasai K. Effects of compression force on fibroblast growth factor-2 and receptor activator of nuclear factor kappa B ligand production by periodontal ligament cells in vitro. J Periodontal Res. 2008 Apr;43(2):168-73. Nakano Y, Yamaguchi M, Fujita S, Asano M, Saito K, Kasai K. Expressions of RANKL/RANK and M-CSF/c-fms in root resorption lacunae in rat molar by heavy orthodontic force. Eur J Orthod. 2011 Aug;33(4):335-43. Nakao K, Goto T, Gunjigake KK, Konoo T, Kobayashi S, Yamaguchi K. Intermittent force induces high RANKL expression in human periodontal ligament cells. J Dent Res. 2007 Jul;86(7):623-8. Nishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K. Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofac Res. 2006 May;9(2):63-70. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, Mitani H. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2008 Apr;133(4):572-83. Ogasawara T, Yoshimine Y, Kiyoshima T, Kobayashi I, Matsuo K, Akamine A, Sakai H. In situ expression of RANKL, RANK, osteoprotegerin and cytokines in osteoclasts of rat periodontal tissue. J Periodontal Res. 2004 Feb;39(1):42-9. Okamoto A, Ohnishi T, Bandow K, Kakimoto K, Chiba N, Maeda A, Fukunaga T, Miyawaki S, Matsuguchi T. Reduction of orthodontic tooth movement by experimentally induced periodontal inflammation in mice. Eur J Oral Sci. 2009 Jun;117(3):238-47. Oshiro T, Shiotani A, Shibasaki Y, Sasaki T. Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. Anat Rec. 2002 Apr 1;266(4):218-25. Santos CF, Sakai VT, Machado MAAM, Schippers DN, Greene AS. Reverse transcription and polymerase chain reaction: principles and applications in dentistry. J Appl Oral Sci. 2004; 12(1):1-11. Shiotani A, Shibasaki Y, Sasaki T. Localization of receptor activator of NFkappaB ligand, RANKL, in periodontal tissues during experimental movement of rat molars. J Electron Microsc (Tokyo). 2001;50(4):365-9. Shiotani A, Takami M, Itoh K, Shibasaki Y, Sasaki T. Regulation of osteoclast differentiation and function by receptor activator of NFkB ligand and osteoprotegerin. Anat Rec. 2002 Oct 1;268(2):137-46. Tan L, Ren Y, Wang J, Jiang L, Cheng H, Sandham A, Zhao Z. Osteoprotegerin and ligand of receptor activator of nuclear factor kappaB expression in ovariectomized rats during tooth movement. Angle Orthod. 2009 Mar;79(2):292-8. Tang L, Lin Z, Li YM. Effects of different magnitudes of mechanical strain on Osteoblasts in vitro. Biochem Biophys Res Commun. 2006 May 26;344(1):122-8. Ten Cate, AR. Oral histology: development, structure and function, 7nd ed. Elservier: Mosby; 2007. Tortamano A, Lenzi DC, Haddad AC, Bottino MC, Dominguez GC, Vigorito JW. Low-level laser therapy for pain caused by placement of the first orthodontic archwire: a randomized clinical trial. Am J Orthod Dentofacial Orthop. 2009 Nov;136(5):662-7. Toygar HU, Kircelli BH, Bulut S, Sezgin N, Tasdelen B. Osteoprotegerin in gingival crevicular fluid under long-term continuous orthodontic force application. Angle Orthod. 2008 Nov;78(6):988-93. Tsuchiya M, Akiba Y, Takahashi I, Sasano Y, Kashiwazaki J, Tsuchiya S, Watanabe M. Comparison of expression patterns of cathepsin K and MMP-9 in odontoclasts and osteoclasts in physiological root resorption in the rat molar. Arch Histol Cytol. 2008 Sep;71(2):89-100. Turhani D, Scheriau M, Kapral D, Benesch T, Jonke E, Bantleon HP. Pain relief by single low-level laser irradiation in orthodontic patients undergoing fixed appliance therapy. Am J Orthod Dentofacial Orthop. 2006 Sep;130(3):371-7. Tyrovola JB, Perrea D, Halazonetis DJ, Dontas I, Vlachos IS, Makou M. Relation of soluble RANKL and osteoprotegerin levels in blood and gingival crevicular fluid to the degree of root resorption after orthodontic tooth movement. J Oral Sci. 2010;52(2):299-311. Wilcko MT, Wilcko WM, Pulver JJ, Bissada NF, Bouquot JE. Accelerated osteogenic orthodontics technique: a 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation. J Oral Maxillofac Surg. 2009 Oct;67(10):2149-59. Xie R, Kuijpers-Jagtman AM, Maltha JC. Osteoclast differentiation during experimental tooth movement by a short-term force application: an immunohistochemical study in rats. Acta Odontol Scand. 2008 Oct;66(5):314-20. Yamaguchi M, Aihara N, Kojima T, Kasai K. RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res. 2006 Aug;85(8):751-6. Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci. 2008 Jan;23(1):27-33. Yu H, de Vos P, Ren Y. Overexpression of osteoprotegerin promotes preosteoblast differentiation to mature osteoblasts. Angle Orthod. 2011 Jan;81(1):102-8. Zhou JP, Feng G, Zhou WW, Ren AS, Wu Y, Zhang DM, Dai HW. Expression of osteoprotegerin and receptor activator of nuclear factor κB ligand in root resorption induced by heavy force in rats. J Orofac Orthop. 2011 Nov;72(6):457-468. Zuo J, Archer LA, Cooper A, Johnson KL, Holliday LS, Dolce C. Nuclear factor kappaB p65 phosphorylation in orthodontic tooth movement. J Dent Res. 2007 Jun;86(6):556-9.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Cidade de São Paulo
dc.publisher.program.fl_str_mv Programa de Pós-Graduação Mestrado em Odontologia
dc.publisher.initials.fl_str_mv UNICID
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Pós-Graduação
publisher.none.fl_str_mv Universidade Cidade de São Paulo
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Cruzeiro do Sul
instname:Universidade Cruzeiro do Sul (UNICSUL)
instacron:UNICSUL
instname_str Universidade Cruzeiro do Sul (UNICSUL)
instacron_str UNICSUL
institution UNICSUL
reponame_str Repositório Institucional da Universidade Cruzeiro do Sul
collection Repositório Institucional da Universidade Cruzeiro do Sul
bitstream.url.fl_str_mv http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/1192/1/Eduardo%20Ernst%20Massarelli.pdf
http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/1192/2/license.txt
bitstream.checksum.fl_str_mv 1db48ab73aa6bfa48776c70a3f87c319
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Cruzeiro do Sul - Universidade Cruzeiro do Sul (UNICSUL)
repository.mail.fl_str_mv mary.pela@unicid.edu.br
_version_ 1801771244098420736