Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Garcia, Marcos Vilela lattes
Orientador(a): Gomes, Davi Butturi lattes
Banca de defesa: Oliveira, Izabela Regina Cardoso De, Delfino, Andréa Cristiane Dos Santos
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alfenas
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística Aplicada e Biometria
Departamento: Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifal-mg.edu.br/handle/123456789/2079
Resumo: The constant search for improving the quality of food products requires increasingly sophisticated means and tools. In this context, the human senses assume a strategic role to evaluate and predict the acceptance of a product in the market. The role of Sensometry here involves the application of mathematical and statistical models that address all aspects of data generation and analysis, from the design of experiments to investigate perceptions and preferences, to specific tools to analyze and model the data resulting from these methods giving important tools with applications in product development, quality assurance, market research and consumer behavior. This study seeks, through a statistical approach, to propose a more specific modeling for a set of sensometric data of a particular case of the Likert scale, the hedonic scale, which, as it is an affective variable (reflects acceptance or preference), allows us to assigning a multinomial distribution to the data, an approach that has also been used in few studies in Sensometry. We also sought to evaluate the acceptance of cereal bars to which different amounts of dry jabuticaba flour were added in a randomized block experiment. In the experiment, each consumer (block) classified the appearance, aroma, flavor, texture and overall impression on a hedonic scale as to their degree of satisfaction. These data were reduced to lower-scoring hedonic scales to build more simplified regression models (fewer intercepts). Another relevant factor was that the statistical analyzes of the response variable (global impression), supposedly multinomial, were conducted in the context of Generalized Linear Models, which removes the “strong” assumption of normal distribution for the data and, in the end, the criterion of Akaike information (AIC) for model selection and, here, where we emphasize that it is unprecedented in Sensometry, we used Akaike Weights for multi-model inference. To compare the performances of the “best” model and the multi- model inferential process, performance measures obtained by stratified cross-validation were calculated. Of the main results, it is worth mentioning that the use of the Multimodel Inference methodology presented, in the 1000 (thousand) simulations carried out for cross validation, a greater number of hits and a greater percentage gain than the single model approach, with greater precision when using a decreasing percentage of training data (adjustment for prediction). We also concluded, whenever possible, that for this case we should use Multimodel Inference and that the inclusion of the quadratic term was important in two of the four most substantial models in Multimodel Inference.
id UNIFAL_2e98f326e6c1d14ad80f3dcd0ad410fc
oai_identifier_str oai:repositorio.unifal-mg.edu.br:123456789/2079
network_acronym_str UNIFAL
network_name_str Biblioteca Digital de Teses e Dissertações da UNIFAL
repository_id_str
spelling Garcia, Marcos Vilelahttp://lattes.cnpq.br/0326922176762825Ferreira, Eric BatistaOliveira, Izabela Regina Cardoso DeDelfino, Andréa Cristiane Dos SantosGomes, Davi Butturihttp://lattes.cnpq.br/82114560655537132022-08-15T14:20:22Z2022-05-12GARCIA, Marcos Vilela. Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação. 2022. 52 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2022.https://repositorio.unifal-mg.edu.br/handle/123456789/2079The constant search for improving the quality of food products requires increasingly sophisticated means and tools. In this context, the human senses assume a strategic role to evaluate and predict the acceptance of a product in the market. The role of Sensometry here involves the application of mathematical and statistical models that address all aspects of data generation and analysis, from the design of experiments to investigate perceptions and preferences, to specific tools to analyze and model the data resulting from these methods giving important tools with applications in product development, quality assurance, market research and consumer behavior. This study seeks, through a statistical approach, to propose a more specific modeling for a set of sensometric data of a particular case of the Likert scale, the hedonic scale, which, as it is an affective variable (reflects acceptance or preference), allows us to assigning a multinomial distribution to the data, an approach that has also been used in few studies in Sensometry. We also sought to evaluate the acceptance of cereal bars to which different amounts of dry jabuticaba flour were added in a randomized block experiment. In the experiment, each consumer (block) classified the appearance, aroma, flavor, texture and overall impression on a hedonic scale as to their degree of satisfaction. These data were reduced to lower-scoring hedonic scales to build more simplified regression models (fewer intercepts). Another relevant factor was that the statistical analyzes of the response variable (global impression), supposedly multinomial, were conducted in the context of Generalized Linear Models, which removes the “strong” assumption of normal distribution for the data and, in the end, the criterion of Akaike information (AIC) for model selection and, here, where we emphasize that it is unprecedented in Sensometry, we used Akaike Weights for multi-model inference. To compare the performances of the “best” model and the multi- model inferential process, performance measures obtained by stratified cross-validation were calculated. Of the main results, it is worth mentioning that the use of the Multimodel Inference methodology presented, in the 1000 (thousand) simulations carried out for cross validation, a greater number of hits and a greater percentage gain than the single model approach, with greater precision when using a decreasing percentage of training data (adjustment for prediction). We also concluded, whenever possible, that for this case we should use Multimodel Inference and that the inclusion of the quadratic term was important in two of the four most substantial models in Multimodel Inference.A constante busca por melhoria da qualidade dos produtos alimentícios exige meios e ferramentas cada vez mais sofisticados. Neste contexto, os sentidos humanos assumem papel estratégico para avaliar e predizer a aceitação de um produto no mercado. O papel da Sensometria aqui envolve a aplicação de modelos matemáticos e estatísticos que tratam de todos os aspectos da geração e análise de dados, desde o delineamento de experimentos ​​para investigar percepções e preferências, até ferramentas específicas para analisar e modelar os dados resultantes desses métodos dando ferramentas importantes com aplicações no desenvolvimento de produtos, garantia de qualidade, pesquisa de mercado e comportamento do consumidor. Este estudo busca, por meio de uma abordagem estatística, propor uma modelagem mais específica para conjunto de dados sensométricos de um caso particular da escala Likert, a escala hedônica, que por ser variável afetiva (reflete a aceitação ou preferência), o que nos permite atribuir aos dados distribuição multinomial, uma abordagem também com poucos estudos em Sensometria. Buscamos também, avaliar a aceitação de barras de cereal às quais foram adicionadas diferentes quantidades de farinha seca de jabuticaba em um experimento em blocos casualizados. No experimento, cada consumidor (bloco) classificou em escala hedônica as variáveis aparência, aroma, sabor, textura e impressão global quanto ao seu grau de satisfação. Esses dados foram reduzidos em escalas hedônicas de menor pontuação para construir modelos de regressão mais simplificados (menos interceptos). Outro fator de relevância foi que as análises estatísticas da variável resposta (impressão global), supostamente multinomial, foram conduzidas no contexto dos Modelos Lineares Generalizados, que retira a pressuposição “forte” de distribuição normal para os dados e ao final foi adotado o critério de informação de Akaike para seleção de modelos e, aqui onde destacamos ser inédito em Sensometria, utilizados os Pesos de Akaike para inferência multimodelo. Para comparar os desempenhos do “melhor” modelo e do processo inferencial multimodelo, foram calculadas medidas de desempenho obtidas por validação cruzada estratificada. Dos principais resultados, merece destaque que o uso da metodologia de Inferência Multimodelo apresentou nas 1000 (mil) simulações realizadas para validação cruzada, um número maior de acertos e um ganho percentual maior do que abordagem de modelo único, com uma precisão maior ao utilizar um percentual cada vez menor de dados de treinamento (ajuste para predição). Concluímos também, sempre que possível, para esse caso devemos utilizar da Inferência Multimodelo e que a inclusão do termo quadrático foi importante em dois dos quatro modelos mais substanciais na Inferência Multimodelo.application/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Análise de dados categóricosAnálise SensorialRazão de chances proporcionaisMétodo holdoutRegressão logísticaPROBABILIDADE E ESTATISTICA::ESTATISTICAModelo multinomial, Inferência multimodelo e validação cruzada: uma aplicaçãoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600-4628977518365129217reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALGarcia, Marcos VilelaLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/48569dd0-febc-4ae6-9342-8f4ea14fd4fd/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/1ce86276-804d-4464-8c12-c6da9d416dd8/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/f32ab3c2-50fc-4cb7-b013-4c824f4da5e5/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/ec917bf5-01d1-41e2-923e-1a8eb9e5f71a/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação de Marcos Vilela Garcia.pdfDissertação de Marcos Vilela Garcia.pdfapplication/pdf2265823https://repositorio.unifal-mg.edu.br/bitstreams/afdfa924-5199-40c1-bc44-64f81be7d923/download55cd185521709b9e7832702ee29b76deMD55TEXTDissertação de Marcos Vilela Garcia.pdf.txtDissertação de Marcos Vilela Garcia.pdf.txtExtracted texttext/plain96900https://repositorio.unifal-mg.edu.br/bitstreams/f3120b76-4d42-4d7c-b1f7-b58fe0b3b9b1/download885f9724adcbdb161b79ec78aca69897MD58THUMBNAILDissertação de Marcos Vilela Garcia.pdf.jpgDissertação de Marcos Vilela Garcia.pdf.jpgGenerated Thumbnailimage/jpeg2426https://repositorio.unifal-mg.edu.br/bitstreams/f49041d2-d0a8-4806-a7eb-b470db6e1026/downloadc850f33c89ce5f4ad31d077ec7e72d4aMD59123456789/20792025-04-14 09:57:00.601http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/2079https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T12:57Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.pt-BR.fl_str_mv Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação
title Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação
spellingShingle Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação
Garcia, Marcos Vilela
Análise de dados categóricos
Análise Sensorial
Razão de chances proporcionais
Método holdout
Regressão logística
PROBABILIDADE E ESTATISTICA::ESTATISTICA
title_short Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação
title_full Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação
title_fullStr Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação
title_full_unstemmed Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação
title_sort Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação
author Garcia, Marcos Vilela
author_facet Garcia, Marcos Vilela
author_role author
dc.contributor.author.fl_str_mv Garcia, Marcos Vilela
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0326922176762825
dc.contributor.advisor-co1.fl_str_mv Ferreira, Eric Batista
dc.contributor.referee1.fl_str_mv Oliveira, Izabela Regina Cardoso De
dc.contributor.referee2.fl_str_mv Delfino, Andréa Cristiane Dos Santos
dc.contributor.advisor1.fl_str_mv Gomes, Davi Butturi
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8211456065553713
contributor_str_mv Ferreira, Eric Batista
Oliveira, Izabela Regina Cardoso De
Delfino, Andréa Cristiane Dos Santos
Gomes, Davi Butturi
dc.subject.por.fl_str_mv Análise de dados categóricos
Análise Sensorial
Razão de chances proporcionais
Método holdout
Regressão logística
topic Análise de dados categóricos
Análise Sensorial
Razão de chances proporcionais
Método holdout
Regressão logística
PROBABILIDADE E ESTATISTICA::ESTATISTICA
dc.subject.cnpq.fl_str_mv PROBABILIDADE E ESTATISTICA::ESTATISTICA
description The constant search for improving the quality of food products requires increasingly sophisticated means and tools. In this context, the human senses assume a strategic role to evaluate and predict the acceptance of a product in the market. The role of Sensometry here involves the application of mathematical and statistical models that address all aspects of data generation and analysis, from the design of experiments to investigate perceptions and preferences, to specific tools to analyze and model the data resulting from these methods giving important tools with applications in product development, quality assurance, market research and consumer behavior. This study seeks, through a statistical approach, to propose a more specific modeling for a set of sensometric data of a particular case of the Likert scale, the hedonic scale, which, as it is an affective variable (reflects acceptance or preference), allows us to assigning a multinomial distribution to the data, an approach that has also been used in few studies in Sensometry. We also sought to evaluate the acceptance of cereal bars to which different amounts of dry jabuticaba flour were added in a randomized block experiment. In the experiment, each consumer (block) classified the appearance, aroma, flavor, texture and overall impression on a hedonic scale as to their degree of satisfaction. These data were reduced to lower-scoring hedonic scales to build more simplified regression models (fewer intercepts). Another relevant factor was that the statistical analyzes of the response variable (global impression), supposedly multinomial, were conducted in the context of Generalized Linear Models, which removes the “strong” assumption of normal distribution for the data and, in the end, the criterion of Akaike information (AIC) for model selection and, here, where we emphasize that it is unprecedented in Sensometry, we used Akaike Weights for multi-model inference. To compare the performances of the “best” model and the multi- model inferential process, performance measures obtained by stratified cross-validation were calculated. Of the main results, it is worth mentioning that the use of the Multimodel Inference methodology presented, in the 1000 (thousand) simulations carried out for cross validation, a greater number of hits and a greater percentage gain than the single model approach, with greater precision when using a decreasing percentage of training data (adjustment for prediction). We also concluded, whenever possible, that for this case we should use Multimodel Inference and that the inclusion of the quadratic term was important in two of the four most substantial models in Multimodel Inference.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-08-15T14:20:22Z
dc.date.issued.fl_str_mv 2022-05-12
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GARCIA, Marcos Vilela. Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação. 2022. 52 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.unifal-mg.edu.br/handle/123456789/2079
identifier_str_mv GARCIA, Marcos Vilela. Modelo multinomial, Inferência multimodelo e validação cruzada: uma aplicação. 2022. 52 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2022.
url https://repositorio.unifal-mg.edu.br/handle/123456789/2079
dc.language.iso.fl_str_mv por
language por
dc.relation.department.fl_str_mv -8156311678363143599
dc.relation.confidence.fl_str_mv 600
600
dc.relation.cnpq.fl_str_mv -4628977518365129217
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística Aplicada e Biometria
dc.publisher.initials.fl_str_mv UNIFAL-MG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL
instname:Universidade Federal de Alfenas (UNIFAL)
instacron:UNIFAL
instname_str Universidade Federal de Alfenas (UNIFAL)
instacron_str UNIFAL
institution UNIFAL
reponame_str Biblioteca Digital de Teses e Dissertações da UNIFAL
collection Biblioteca Digital de Teses e Dissertações da UNIFAL
bitstream.url.fl_str_mv https://repositorio.unifal-mg.edu.br/bitstreams/48569dd0-febc-4ae6-9342-8f4ea14fd4fd/download
https://repositorio.unifal-mg.edu.br/bitstreams/1ce86276-804d-4464-8c12-c6da9d416dd8/download
https://repositorio.unifal-mg.edu.br/bitstreams/f32ab3c2-50fc-4cb7-b013-4c824f4da5e5/download
https://repositorio.unifal-mg.edu.br/bitstreams/ec917bf5-01d1-41e2-923e-1a8eb9e5f71a/download
https://repositorio.unifal-mg.edu.br/bitstreams/afdfa924-5199-40c1-bc44-64f81be7d923/download
https://repositorio.unifal-mg.edu.br/bitstreams/f3120b76-4d42-4d7c-b1f7-b58fe0b3b9b1/download
https://repositorio.unifal-mg.edu.br/bitstreams/f49041d2-d0a8-4806-a7eb-b470db6e1026/download
bitstream.checksum.fl_str_mv 31555718c4fc75849dd08f27935d4f6b
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
55cd185521709b9e7832702ee29b76de
885f9724adcbdb161b79ec78aca69897
c850f33c89ce5f4ad31d077ec7e72d4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)
repository.mail.fl_str_mv bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br
_version_ 1850508388819009536