Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Ludovico, Sérgio Nunes lattes
Orientador(a): Salgado, Ricardo Menezes lattes
Banca de defesa: Miguel, Eliseu César, Rezende, Marcelo Lacerda
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alfenas
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística Aplicada e Biometria
Departamento: Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifal-mg.edu.br/handle/123456789/1762
Resumo: The prediction of values in a time series is the object of study in several fields of knowledge. In the future market for agricultural commodities, this type of information can be used to minimize investment risks and contribute to the increase in the volume of negotiations for various commodities. As the prices of these assets are influenced by many external variables, forecasts are generally made through fundamental or technical analysis and this work is carried out by specialists in the field. This restricts the access of individuals who could invest, but does not do so because they do not have the knowledge that is necessary for the survival of this business. This study proposes a computational model, using machine learning techniques and algorithms, to predict future values in historical data series. When executing it several times, in a randomized way, seven different types of forecasts are obtained for each commodity series analyzed. The series are records of price quotations maintained by CEPEA, in US$, for sugar, live cattle, coffee, ethanol, corn and soybeans. The performance and stability of the predictions of the algorithms: k-nearest neighbors; random forest; artificial neural network; support vector machine; and extreme gradient boosting and joint learning methods: ensemble by average and stacking, are measured using statistics from the MAE, RMSE and MAPE error metrics. This constituted the computational experiment and demonstrated that the support vector machine is the algorithm with the best performance for this group of series. With the techniques applied, the results show that the forecasts have high performance during the validation of the model, suggesting that they are useful in the horizon of one step ahead. The results of this research indicate that this approach has the potential to be used as an alternative for automation of technical analysis, contributing to the reduction and quantification of forecast errors in the short term. Through the routine and frequent application of this technique, speculators and hedgers can benefit from using this approach, as support to decision making, to reduce the risks of negotiations.
id UNIFAL_ac314902ac9362fa641ac6ea189c84d1
oai_identifier_str oai:repositorio.unifal-mg.edu.br:123456789/1762
network_acronym_str UNIFAL
network_name_str Biblioteca Digital de Teses e Dissertações da UNIFAL
repository_id_str
spelling Ludovico, Sérgio Nuneshttp://lattes.cnpq.br/8918198224706238Beijo, Luiz AlbertoMiguel, Eliseu CésarRezende, Marcelo LacerdaSalgado, Ricardo Menezeshttp://lattes.cnpq.br/37621478094736362021-03-10T14:22:31Z2020-08-21LUDOVICO, Sérgio Nunes. Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina. 2020. 155 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2020.https://repositorio.unifal-mg.edu.br/handle/123456789/1762The prediction of values in a time series is the object of study in several fields of knowledge. In the future market for agricultural commodities, this type of information can be used to minimize investment risks and contribute to the increase in the volume of negotiations for various commodities. As the prices of these assets are influenced by many external variables, forecasts are generally made through fundamental or technical analysis and this work is carried out by specialists in the field. This restricts the access of individuals who could invest, but does not do so because they do not have the knowledge that is necessary for the survival of this business. This study proposes a computational model, using machine learning techniques and algorithms, to predict future values in historical data series. When executing it several times, in a randomized way, seven different types of forecasts are obtained for each commodity series analyzed. The series are records of price quotations maintained by CEPEA, in US$, for sugar, live cattle, coffee, ethanol, corn and soybeans. The performance and stability of the predictions of the algorithms: k-nearest neighbors; random forest; artificial neural network; support vector machine; and extreme gradient boosting and joint learning methods: ensemble by average and stacking, are measured using statistics from the MAE, RMSE and MAPE error metrics. This constituted the computational experiment and demonstrated that the support vector machine is the algorithm with the best performance for this group of series. With the techniques applied, the results show that the forecasts have high performance during the validation of the model, suggesting that they are useful in the horizon of one step ahead. The results of this research indicate that this approach has the potential to be used as an alternative for automation of technical analysis, contributing to the reduction and quantification of forecast errors in the short term. Through the routine and frequent application of this technique, speculators and hedgers can benefit from using this approach, as support to decision making, to reduce the risks of negotiations.A previsão de valores em uma série temporal é objeto de estudo em vários campos do conhecimento. No mercado futuro de commodities agrícolas esse tipo de informação pode ser utilizada para minimizar riscos aos investimentos e contribuir para o aumento de volume de negociações de diversas mercadorias. Como os preços desses ativos sofrem influência de muitas variáveis externas, geralmente as previsões são feitas por meio de análises fundamentalista ou técnica e este trabalho é realizado por pessoas especialistas da área. Isso restringe o acesso de indivíduos que poderiam investir, mas não o faz por não ter esse conhecimento que é necessário para a sobrevivência desse negócio. Esse estudo propõe um modelo computacional, utilizando algoritmos e técnicas de aprendizagem de máquina, para prever valores futuros em séries de dados históricos. Ao executá-lo várias vezes, de forma randomizada, obtém-se sete tipos de previsões diferentes para cada série de commodity analisada. As séries são registros de cotações de preços mantidas pelo CEPEA, em US$, de açúcar, boi, café, etanol, milho e soja. O desempenho e a estabilidade das previsões dos algoritmos: k-nearest neighbors; random forest; rede neural artificial; support vector machine; e extreme gradient boosting e dos métodos de aprendizagem em conjunto: ensemble por média e stacking, são medidos utilizando estatísticas das métricas de erros MAE, RMSE e MAPE. Isso constituiu o experimento computacional e demonstrou que o support vector machine é o algoritmo com o melhor desempenho para esse grupo de séries. Com as técnicas aplicadas, os resultados mostram que as previsões têm alto desempenho durante a validação do modelo sugerindo que elas são úteis no horizonte de um passo à frente. Os resultados dessa pesquisa apontam que essa abordagem tem potencial para ser utilizada como uma alternativa de automação da análise técnica contribuindo para a redução e quantificação dos erros de previsões no curto prazo. Por meio da aplicação rotineira e de grande frequência dessa técnica especuladores e hedgers podem ser beneficiados ao utilizar essa abordagem, como apoio à tomada de decisão, para reduzir os riscos das negociações.application/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Bolsa de valoresMercado de ações-PrevisãoInvestimentosMatemática financeira.CIENCIAS AGRARIASPrevisão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquinainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-81563116783631435996006007828424726906663919reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALLudovico, Sérgio NunesLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/9437645c-0d93-4124-8107-f8df4a5a0ea8/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/09cbb609-24c8-41ac-9d93-2c3346a078e9/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/195d24bf-5d14-41ca-b252-bc0cd86fb07c/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/eb8a0787-1a10-49f2-a09a-f853f5422039/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação de Sérgio Nunes Ludovico.pdfDissertação de Sérgio Nunes Ludovico.pdfapplication/pdf1441455https://repositorio.unifal-mg.edu.br/bitstreams/0b3fdbdd-fab0-4ff4-b144-6026cb3a2117/downloaddbcb85115097250ab7d15a46f14ab046MD55TEXTDissertação de Sérgio Nunes Ludovico.pdf.txtDissertação de Sérgio Nunes Ludovico.pdf.txtExtracted texttext/plain103466https://repositorio.unifal-mg.edu.br/bitstreams/7f835ea2-469b-4bcb-a51e-d27bdab5bd2b/download38ddf33f03cef71e78548b88d7891fa3MD58THUMBNAILDissertação de Sérgio Nunes Ludovico.pdf.jpgDissertação de Sérgio Nunes Ludovico.pdf.jpgGenerated Thumbnailimage/jpeg2551https://repositorio.unifal-mg.edu.br/bitstreams/758ea68b-1589-40ec-95d2-02d826c0db98/download2f0fd1c417a3e619f5520472ef94791cMD59123456789/17622025-04-14 10:00:14.444http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/1762https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T13:00:14Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.pt-BR.fl_str_mv Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina
title Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina
spellingShingle Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina
Ludovico, Sérgio Nunes
Bolsa de valores
Mercado de ações-Previsão
Investimentos
Matemática financeira.
CIENCIAS AGRARIAS
title_short Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina
title_full Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina
title_fullStr Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina
title_full_unstemmed Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina
title_sort Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina
author Ludovico, Sérgio Nunes
author_facet Ludovico, Sérgio Nunes
author_role author
dc.contributor.author.fl_str_mv Ludovico, Sérgio Nunes
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8918198224706238
dc.contributor.advisor-co1.fl_str_mv Beijo, Luiz Alberto
dc.contributor.referee1.fl_str_mv Miguel, Eliseu César
dc.contributor.referee2.fl_str_mv Rezende, Marcelo Lacerda
dc.contributor.advisor1.fl_str_mv Salgado, Ricardo Menezes
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3762147809473636
contributor_str_mv Beijo, Luiz Alberto
Miguel, Eliseu César
Rezende, Marcelo Lacerda
Salgado, Ricardo Menezes
dc.subject.por.fl_str_mv Bolsa de valores
Mercado de ações-Previsão
Investimentos
Matemática financeira.
topic Bolsa de valores
Mercado de ações-Previsão
Investimentos
Matemática financeira.
CIENCIAS AGRARIAS
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS
description The prediction of values in a time series is the object of study in several fields of knowledge. In the future market for agricultural commodities, this type of information can be used to minimize investment risks and contribute to the increase in the volume of negotiations for various commodities. As the prices of these assets are influenced by many external variables, forecasts are generally made through fundamental or technical analysis and this work is carried out by specialists in the field. This restricts the access of individuals who could invest, but does not do so because they do not have the knowledge that is necessary for the survival of this business. This study proposes a computational model, using machine learning techniques and algorithms, to predict future values in historical data series. When executing it several times, in a randomized way, seven different types of forecasts are obtained for each commodity series analyzed. The series are records of price quotations maintained by CEPEA, in US$, for sugar, live cattle, coffee, ethanol, corn and soybeans. The performance and stability of the predictions of the algorithms: k-nearest neighbors; random forest; artificial neural network; support vector machine; and extreme gradient boosting and joint learning methods: ensemble by average and stacking, are measured using statistics from the MAE, RMSE and MAPE error metrics. This constituted the computational experiment and demonstrated that the support vector machine is the algorithm with the best performance for this group of series. With the techniques applied, the results show that the forecasts have high performance during the validation of the model, suggesting that they are useful in the horizon of one step ahead. The results of this research indicate that this approach has the potential to be used as an alternative for automation of technical analysis, contributing to the reduction and quantification of forecast errors in the short term. Through the routine and frequent application of this technique, speculators and hedgers can benefit from using this approach, as support to decision making, to reduce the risks of negotiations.
publishDate 2020
dc.date.issued.fl_str_mv 2020-08-21
dc.date.accessioned.fl_str_mv 2021-03-10T14:22:31Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LUDOVICO, Sérgio Nunes. Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina. 2020. 155 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2020.
dc.identifier.uri.fl_str_mv https://repositorio.unifal-mg.edu.br/handle/123456789/1762
identifier_str_mv LUDOVICO, Sérgio Nunes. Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina. 2020. 155 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2020.
url https://repositorio.unifal-mg.edu.br/handle/123456789/1762
dc.language.iso.fl_str_mv por
language por
dc.relation.department.fl_str_mv -8156311678363143599
dc.relation.confidence.fl_str_mv 600
600
dc.relation.cnpq.fl_str_mv 7828424726906663919
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística Aplicada e Biometria
dc.publisher.initials.fl_str_mv UNIFAL-MG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL
instname:Universidade Federal de Alfenas (UNIFAL)
instacron:UNIFAL
instname_str Universidade Federal de Alfenas (UNIFAL)
instacron_str UNIFAL
institution UNIFAL
reponame_str Biblioteca Digital de Teses e Dissertações da UNIFAL
collection Biblioteca Digital de Teses e Dissertações da UNIFAL
bitstream.url.fl_str_mv https://repositorio.unifal-mg.edu.br/bitstreams/9437645c-0d93-4124-8107-f8df4a5a0ea8/download
https://repositorio.unifal-mg.edu.br/bitstreams/09cbb609-24c8-41ac-9d93-2c3346a078e9/download
https://repositorio.unifal-mg.edu.br/bitstreams/195d24bf-5d14-41ca-b252-bc0cd86fb07c/download
https://repositorio.unifal-mg.edu.br/bitstreams/eb8a0787-1a10-49f2-a09a-f853f5422039/download
https://repositorio.unifal-mg.edu.br/bitstreams/0b3fdbdd-fab0-4ff4-b144-6026cb3a2117/download
https://repositorio.unifal-mg.edu.br/bitstreams/7f835ea2-469b-4bcb-a51e-d27bdab5bd2b/download
https://repositorio.unifal-mg.edu.br/bitstreams/758ea68b-1589-40ec-95d2-02d826c0db98/download
bitstream.checksum.fl_str_mv 31555718c4fc75849dd08f27935d4f6b
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
dbcb85115097250ab7d15a46f14ab046
38ddf33f03cef71e78548b88d7891fa3
2f0fd1c417a3e619f5520472ef94791c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)
repository.mail.fl_str_mv bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br
_version_ 1850508394360733696