Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Alfenas
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Estatística Aplicada e Biometria
|
| Departamento: |
Instituto de Ciências Exatas
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.unifal-mg.edu.br/handle/123456789/1762 |
Resumo: | The prediction of values in a time series is the object of study in several fields of knowledge. In the future market for agricultural commodities, this type of information can be used to minimize investment risks and contribute to the increase in the volume of negotiations for various commodities. As the prices of these assets are influenced by many external variables, forecasts are generally made through fundamental or technical analysis and this work is carried out by specialists in the field. This restricts the access of individuals who could invest, but does not do so because they do not have the knowledge that is necessary for the survival of this business. This study proposes a computational model, using machine learning techniques and algorithms, to predict future values in historical data series. When executing it several times, in a randomized way, seven different types of forecasts are obtained for each commodity series analyzed. The series are records of price quotations maintained by CEPEA, in US$, for sugar, live cattle, coffee, ethanol, corn and soybeans. The performance and stability of the predictions of the algorithms: k-nearest neighbors; random forest; artificial neural network; support vector machine; and extreme gradient boosting and joint learning methods: ensemble by average and stacking, are measured using statistics from the MAE, RMSE and MAPE error metrics. This constituted the computational experiment and demonstrated that the support vector machine is the algorithm with the best performance for this group of series. With the techniques applied, the results show that the forecasts have high performance during the validation of the model, suggesting that they are useful in the horizon of one step ahead. The results of this research indicate that this approach has the potential to be used as an alternative for automation of technical analysis, contributing to the reduction and quantification of forecast errors in the short term. Through the routine and frequent application of this technique, speculators and hedgers can benefit from using this approach, as support to decision making, to reduce the risks of negotiations. |
| id |
UNIFAL_ac314902ac9362fa641ac6ea189c84d1 |
|---|---|
| oai_identifier_str |
oai:repositorio.unifal-mg.edu.br:123456789/1762 |
| network_acronym_str |
UNIFAL |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| repository_id_str |
|
| spelling |
Ludovico, Sérgio Nuneshttp://lattes.cnpq.br/8918198224706238Beijo, Luiz AlbertoMiguel, Eliseu CésarRezende, Marcelo LacerdaSalgado, Ricardo Menezeshttp://lattes.cnpq.br/37621478094736362021-03-10T14:22:31Z2020-08-21LUDOVICO, Sérgio Nunes. Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina. 2020. 155 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2020.https://repositorio.unifal-mg.edu.br/handle/123456789/1762The prediction of values in a time series is the object of study in several fields of knowledge. In the future market for agricultural commodities, this type of information can be used to minimize investment risks and contribute to the increase in the volume of negotiations for various commodities. As the prices of these assets are influenced by many external variables, forecasts are generally made through fundamental or technical analysis and this work is carried out by specialists in the field. This restricts the access of individuals who could invest, but does not do so because they do not have the knowledge that is necessary for the survival of this business. This study proposes a computational model, using machine learning techniques and algorithms, to predict future values in historical data series. When executing it several times, in a randomized way, seven different types of forecasts are obtained for each commodity series analyzed. The series are records of price quotations maintained by CEPEA, in US$, for sugar, live cattle, coffee, ethanol, corn and soybeans. The performance and stability of the predictions of the algorithms: k-nearest neighbors; random forest; artificial neural network; support vector machine; and extreme gradient boosting and joint learning methods: ensemble by average and stacking, are measured using statistics from the MAE, RMSE and MAPE error metrics. This constituted the computational experiment and demonstrated that the support vector machine is the algorithm with the best performance for this group of series. With the techniques applied, the results show that the forecasts have high performance during the validation of the model, suggesting that they are useful in the horizon of one step ahead. The results of this research indicate that this approach has the potential to be used as an alternative for automation of technical analysis, contributing to the reduction and quantification of forecast errors in the short term. Through the routine and frequent application of this technique, speculators and hedgers can benefit from using this approach, as support to decision making, to reduce the risks of negotiations.A previsão de valores em uma série temporal é objeto de estudo em vários campos do conhecimento. No mercado futuro de commodities agrícolas esse tipo de informação pode ser utilizada para minimizar riscos aos investimentos e contribuir para o aumento de volume de negociações de diversas mercadorias. Como os preços desses ativos sofrem influência de muitas variáveis externas, geralmente as previsões são feitas por meio de análises fundamentalista ou técnica e este trabalho é realizado por pessoas especialistas da área. Isso restringe o acesso de indivíduos que poderiam investir, mas não o faz por não ter esse conhecimento que é necessário para a sobrevivência desse negócio. Esse estudo propõe um modelo computacional, utilizando algoritmos e técnicas de aprendizagem de máquina, para prever valores futuros em séries de dados históricos. Ao executá-lo várias vezes, de forma randomizada, obtém-se sete tipos de previsões diferentes para cada série de commodity analisada. As séries são registros de cotações de preços mantidas pelo CEPEA, em US$, de açúcar, boi, café, etanol, milho e soja. O desempenho e a estabilidade das previsões dos algoritmos: k-nearest neighbors; random forest; rede neural artificial; support vector machine; e extreme gradient boosting e dos métodos de aprendizagem em conjunto: ensemble por média e stacking, são medidos utilizando estatísticas das métricas de erros MAE, RMSE e MAPE. Isso constituiu o experimento computacional e demonstrou que o support vector machine é o algoritmo com o melhor desempenho para esse grupo de séries. Com as técnicas aplicadas, os resultados mostram que as previsões têm alto desempenho durante a validação do modelo sugerindo que elas são úteis no horizonte de um passo à frente. Os resultados dessa pesquisa apontam que essa abordagem tem potencial para ser utilizada como uma alternativa de automação da análise técnica contribuindo para a redução e quantificação dos erros de previsões no curto prazo. Por meio da aplicação rotineira e de grande frequência dessa técnica especuladores e hedgers podem ser beneficiados ao utilizar essa abordagem, como apoio à tomada de decisão, para reduzir os riscos das negociações.application/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Bolsa de valoresMercado de ações-PrevisãoInvestimentosMatemática financeira.CIENCIAS AGRARIASPrevisão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquinainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-81563116783631435996006007828424726906663919reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALLudovico, Sérgio NunesLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/9437645c-0d93-4124-8107-f8df4a5a0ea8/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/09cbb609-24c8-41ac-9d93-2c3346a078e9/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/195d24bf-5d14-41ca-b252-bc0cd86fb07c/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/eb8a0787-1a10-49f2-a09a-f853f5422039/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação de Sérgio Nunes Ludovico.pdfDissertação de Sérgio Nunes Ludovico.pdfapplication/pdf1441455https://repositorio.unifal-mg.edu.br/bitstreams/0b3fdbdd-fab0-4ff4-b144-6026cb3a2117/downloaddbcb85115097250ab7d15a46f14ab046MD55TEXTDissertação de Sérgio Nunes Ludovico.pdf.txtDissertação de Sérgio Nunes Ludovico.pdf.txtExtracted texttext/plain103466https://repositorio.unifal-mg.edu.br/bitstreams/7f835ea2-469b-4bcb-a51e-d27bdab5bd2b/download38ddf33f03cef71e78548b88d7891fa3MD58THUMBNAILDissertação de Sérgio Nunes Ludovico.pdf.jpgDissertação de Sérgio Nunes Ludovico.pdf.jpgGenerated Thumbnailimage/jpeg2551https://repositorio.unifal-mg.edu.br/bitstreams/758ea68b-1589-40ec-95d2-02d826c0db98/download2f0fd1c417a3e619f5520472ef94791cMD59123456789/17622025-04-14 10:00:14.444http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/1762https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T13:00:14Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.pt-BR.fl_str_mv |
Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina |
| title |
Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina |
| spellingShingle |
Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina Ludovico, Sérgio Nunes Bolsa de valores Mercado de ações-Previsão Investimentos Matemática financeira. CIENCIAS AGRARIAS |
| title_short |
Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina |
| title_full |
Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina |
| title_fullStr |
Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina |
| title_full_unstemmed |
Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina |
| title_sort |
Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina |
| author |
Ludovico, Sérgio Nunes |
| author_facet |
Ludovico, Sérgio Nunes |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Ludovico, Sérgio Nunes |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8918198224706238 |
| dc.contributor.advisor-co1.fl_str_mv |
Beijo, Luiz Alberto |
| dc.contributor.referee1.fl_str_mv |
Miguel, Eliseu César |
| dc.contributor.referee2.fl_str_mv |
Rezende, Marcelo Lacerda |
| dc.contributor.advisor1.fl_str_mv |
Salgado, Ricardo Menezes |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3762147809473636 |
| contributor_str_mv |
Beijo, Luiz Alberto Miguel, Eliseu César Rezende, Marcelo Lacerda Salgado, Ricardo Menezes |
| dc.subject.por.fl_str_mv |
Bolsa de valores Mercado de ações-Previsão Investimentos Matemática financeira. |
| topic |
Bolsa de valores Mercado de ações-Previsão Investimentos Matemática financeira. CIENCIAS AGRARIAS |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS |
| description |
The prediction of values in a time series is the object of study in several fields of knowledge. In the future market for agricultural commodities, this type of information can be used to minimize investment risks and contribute to the increase in the volume of negotiations for various commodities. As the prices of these assets are influenced by many external variables, forecasts are generally made through fundamental or technical analysis and this work is carried out by specialists in the field. This restricts the access of individuals who could invest, but does not do so because they do not have the knowledge that is necessary for the survival of this business. This study proposes a computational model, using machine learning techniques and algorithms, to predict future values in historical data series. When executing it several times, in a randomized way, seven different types of forecasts are obtained for each commodity series analyzed. The series are records of price quotations maintained by CEPEA, in US$, for sugar, live cattle, coffee, ethanol, corn and soybeans. The performance and stability of the predictions of the algorithms: k-nearest neighbors; random forest; artificial neural network; support vector machine; and extreme gradient boosting and joint learning methods: ensemble by average and stacking, are measured using statistics from the MAE, RMSE and MAPE error metrics. This constituted the computational experiment and demonstrated that the support vector machine is the algorithm with the best performance for this group of series. With the techniques applied, the results show that the forecasts have high performance during the validation of the model, suggesting that they are useful in the horizon of one step ahead. The results of this research indicate that this approach has the potential to be used as an alternative for automation of technical analysis, contributing to the reduction and quantification of forecast errors in the short term. Through the routine and frequent application of this technique, speculators and hedgers can benefit from using this approach, as support to decision making, to reduce the risks of negotiations. |
| publishDate |
2020 |
| dc.date.issued.fl_str_mv |
2020-08-21 |
| dc.date.accessioned.fl_str_mv |
2021-03-10T14:22:31Z |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
LUDOVICO, Sérgio Nunes. Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina. 2020. 155 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2020. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.unifal-mg.edu.br/handle/123456789/1762 |
| identifier_str_mv |
LUDOVICO, Sérgio Nunes. Previsão de indicadores diários de preços no mercado futuro de commodities agrícolas utilizando aprendizagem de máquina. 2020. 155 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2020. |
| url |
https://repositorio.unifal-mg.edu.br/handle/123456789/1762 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.department.fl_str_mv |
-8156311678363143599 |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.cnpq.fl_str_mv |
7828424726906663919 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Estatística Aplicada e Biometria |
| dc.publisher.initials.fl_str_mv |
UNIFAL-MG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Ciências Exatas |
| publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL instname:Universidade Federal de Alfenas (UNIFAL) instacron:UNIFAL |
| instname_str |
Universidade Federal de Alfenas (UNIFAL) |
| instacron_str |
UNIFAL |
| institution |
UNIFAL |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| collection |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| bitstream.url.fl_str_mv |
https://repositorio.unifal-mg.edu.br/bitstreams/9437645c-0d93-4124-8107-f8df4a5a0ea8/download https://repositorio.unifal-mg.edu.br/bitstreams/09cbb609-24c8-41ac-9d93-2c3346a078e9/download https://repositorio.unifal-mg.edu.br/bitstreams/195d24bf-5d14-41ca-b252-bc0cd86fb07c/download https://repositorio.unifal-mg.edu.br/bitstreams/eb8a0787-1a10-49f2-a09a-f853f5422039/download https://repositorio.unifal-mg.edu.br/bitstreams/0b3fdbdd-fab0-4ff4-b144-6026cb3a2117/download https://repositorio.unifal-mg.edu.br/bitstreams/7f835ea2-469b-4bcb-a51e-d27bdab5bd2b/download https://repositorio.unifal-mg.edu.br/bitstreams/758ea68b-1589-40ec-95d2-02d826c0db98/download |
| bitstream.checksum.fl_str_mv |
31555718c4fc75849dd08f27935d4f6b 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e dbcb85115097250ab7d15a46f14ab046 38ddf33f03cef71e78548b88d7891fa3 2f0fd1c417a3e619f5520472ef94791c |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL) |
| repository.mail.fl_str_mv |
bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br |
| _version_ |
1850508394360733696 |