Distribuição normal de Kumaraswamy bivariada
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Alfenas
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Estatística Aplicada e Biometria
|
| Departamento: |
Instituto de Ciências Exatas
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.unifal-mg.edu.br/handle/123456789/833 |
Resumo: | The normal distribution is the most important probability distribution, used in modeling of continuous data. However, there are cases where the assumption of distribution related to normal model is violated and the search for other distributions that model these cases is necessary. One of the points that can justify the absence of normality is the lack of symmetry. A distribution whose main characteristic shape asymmetric behavior data is Kumaraswamy. The combination of the flexibility of the modeling asymmetric data distribution Kumaraswamy with known distributions, such as normal andWeibull, enabled the creation of a family of generalized distributions. The multivariate distributions we highlight the importance of applications in data modeling in various field of knowledge. However, there is the existence of few distributions that model heavier tails and asymmetry situations. This study aimed to study the class of generalized distributions Kumaraswamy deduct the normal distribution bivariate Kumaraswamy, present the likelihood function and the expressions of their estimators. Implemented the estimation procedure using the scores functions in textit software R and a simulation approach. We evaluated the simulated data estimation and also in real application examples with asymmetric distribution. It can be concluded therefore that the normal distribution bivariate Kumaraswamy was deduced in relation to their joint density function, marginal, conditional and implemented for the simulation study. The estimators behaved precisely, consistent and unbiased. The normal distribution bivariate Kumarawamy adjusted satisfactorily to the actual data of average temperature and total precipitation. |
| id |
UNIFAL_be4d70e559ce69bde6d7b77808060309 |
|---|---|
| oai_identifier_str |
oai:repositorio.unifal-mg.edu.br:123456789/833 |
| network_acronym_str |
UNIFAL |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| repository_id_str |
|
| spelling |
Monteiro, Michelle Aparecida Corrêahttp://lattes.cnpq.br/3858924778362309Ferreira, Eric BatistaSilva, Ana Paula Coelho MadeiraBeijo, Luiz AlbertoNogueira, Denismar Alveshttp://lattes.cnpq.br/96471760586102682016-06-20T21:43:07Z2015-04-16MONTEIRO, Michelle Aparecida Corrêa. Distribuição normal de Kumaraswamy bivariada. 2015. 65 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2015.https://repositorio.unifal-mg.edu.br/handle/123456789/833The normal distribution is the most important probability distribution, used in modeling of continuous data. However, there are cases where the assumption of distribution related to normal model is violated and the search for other distributions that model these cases is necessary. One of the points that can justify the absence of normality is the lack of symmetry. A distribution whose main characteristic shape asymmetric behavior data is Kumaraswamy. The combination of the flexibility of the modeling asymmetric data distribution Kumaraswamy with known distributions, such as normal andWeibull, enabled the creation of a family of generalized distributions. The multivariate distributions we highlight the importance of applications in data modeling in various field of knowledge. However, there is the existence of few distributions that model heavier tails and asymmetry situations. This study aimed to study the class of generalized distributions Kumaraswamy deduct the normal distribution bivariate Kumaraswamy, present the likelihood function and the expressions of their estimators. Implemented the estimation procedure using the scores functions in textit software R and a simulation approach. We evaluated the simulated data estimation and also in real application examples with asymmetric distribution. It can be concluded therefore that the normal distribution bivariate Kumaraswamy was deduced in relation to their joint density function, marginal, conditional and implemented for the simulation study. The estimators behaved precisely, consistent and unbiased. The normal distribution bivariate Kumarawamy adjusted satisfactorily to the actual data of average temperature and total precipitation.A distribuição normal é a mais importante distribuição de probabilidade, usada na modelagem de dados contínuos. Entretanto, há casos em que a suposição da distribuição relacionada ao modelo normal é violada e a busca por outras distribuições que modelem esses casos se faz necessário. Um dos pontos que pode justificar a ausência de normalidade é a falta de simetria. Uma distribuição que tem como principal característica modelar dados de comportamento assimétrico é a Kumaraswamy. A junção da flexibilidade de modelar dados assimétricos da distribuição de Kumaraswamy com distribuições conhecidas, tais como normal e weibull, permitiu a criação de uma família de distribuições generalizadas. As distribuições multivariadas destacam-se pela importância de aplicações na modelagem de dados em diversas área do conhecimento. No entanto, observa-se a existência de poucas distribuições que modelem caudas mais pesadas e situações de assimetria. Este trabalho teve como objetivo, estudar a classe de distribuições generalizadas de Kumaraswamy, deduzir a distribuição normal de Kumaraswamy bivariada, apresentar a função de verossimilhança e as expressões de seus estimadores. Implementou-se o procedimento de estimação com uso das funções escores no software R e uma abordagem de simulação. Foram avaliadas a estimação de dados simulados e também aplicação em exemplos reais com distribuição assimétrica. Conclui-se, portanto que, a distribuição normal de Kumaraswamy bivariada foi deduzida em relação à sua função de densidade conjunta, marginais, condicionais e implementada para o estudo de simulação. Os estimadores comportaram de maneira precisa, consistente e não tendenciosa. A distribuição normal de Kumarawamy bivariada se ajustou satisfatoriamente aos dados reais de temperatura média e precipitação total.Programa Institucional de Bolsas de Pós-Graduação - PIB-PÓSapplication/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Técnicas de EstimativaFunções VerossimilhançaMeteorologiaDistribuição (Probabilidades)PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADASDistribuição normal de Kumaraswamy bivariadainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600600-21048508539903632008119421590424746971reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALMonteiro, Michelle Aparecida CorrêaLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/08cb88d7-730a-4de4-95b3-7ea08d53265e/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/bb3c435a-25cb-496f-b4df-f914bcebf1a6/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822064https://repositorio.unifal-mg.edu.br/bitstreams/3f2a9fd8-27ec-476e-b262-a063f40eb5f1/downloadef48816a10f2d45f2e2fee2f478e2fafMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148https://repositorio.unifal-mg.edu.br/bitstreams/c896c71c-9807-468f-9d1d-f1e60e7ed3cd/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALDissertação de Michelle Aparecida Corrêa Monteiro.pdfDissertação de Michelle Aparecida Corrêa Monteiro.pdfapplication/pdf673432https://repositorio.unifal-mg.edu.br/bitstreams/499537bf-5300-448b-a7c2-796fe9b39176/downloade97dfe97f083c02509260be782bd1512MD55TEXTDissertação de Michelle Aparecida Corrêa Monteiro.pdf.txtDissertação de Michelle Aparecida Corrêa Monteiro.pdf.txtExtracted texttext/plain86461https://repositorio.unifal-mg.edu.br/bitstreams/62345739-3b71-4071-94ab-e68409b10d67/download38ba05faeb563e545b5882cb7f1f19f9MD56THUMBNAILDissertação de Michelle Aparecida Corrêa Monteiro.pdf.jpgDissertação de Michelle Aparecida Corrêa Monteiro.pdf.jpgGenerated Thumbnailimage/jpeg3158https://repositorio.unifal-mg.edu.br/bitstreams/0b850925-7ebb-4682-86d1-9b5fc695bda2/download5c933d42cca0eed3282a5afdb0f596f4MD57123456789/8332025-04-14 17:37:59.477http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/833https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T20:37:59Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.pt-BR.fl_str_mv |
Distribuição normal de Kumaraswamy bivariada |
| title |
Distribuição normal de Kumaraswamy bivariada |
| spellingShingle |
Distribuição normal de Kumaraswamy bivariada Monteiro, Michelle Aparecida Corrêa Técnicas de Estimativa Funções Verossimilhança Meteorologia Distribuição (Probabilidades) PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| title_short |
Distribuição normal de Kumaraswamy bivariada |
| title_full |
Distribuição normal de Kumaraswamy bivariada |
| title_fullStr |
Distribuição normal de Kumaraswamy bivariada |
| title_full_unstemmed |
Distribuição normal de Kumaraswamy bivariada |
| title_sort |
Distribuição normal de Kumaraswamy bivariada |
| author |
Monteiro, Michelle Aparecida Corrêa |
| author_facet |
Monteiro, Michelle Aparecida Corrêa |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Monteiro, Michelle Aparecida Corrêa |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3858924778362309 |
| dc.contributor.advisor-co1.fl_str_mv |
Ferreira, Eric Batista |
| dc.contributor.referee1.fl_str_mv |
Silva, Ana Paula Coelho Madeira |
| dc.contributor.referee2.fl_str_mv |
Beijo, Luiz Alberto |
| dc.contributor.advisor1.fl_str_mv |
Nogueira, Denismar Alves |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9647176058610268 |
| contributor_str_mv |
Ferreira, Eric Batista Silva, Ana Paula Coelho Madeira Beijo, Luiz Alberto Nogueira, Denismar Alves |
| dc.subject.por.fl_str_mv |
Técnicas de Estimativa Funções Verossimilhança Meteorologia Distribuição (Probabilidades) |
| topic |
Técnicas de Estimativa Funções Verossimilhança Meteorologia Distribuição (Probabilidades) PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| dc.subject.cnpq.fl_str_mv |
PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| description |
The normal distribution is the most important probability distribution, used in modeling of continuous data. However, there are cases where the assumption of distribution related to normal model is violated and the search for other distributions that model these cases is necessary. One of the points that can justify the absence of normality is the lack of symmetry. A distribution whose main characteristic shape asymmetric behavior data is Kumaraswamy. The combination of the flexibility of the modeling asymmetric data distribution Kumaraswamy with known distributions, such as normal andWeibull, enabled the creation of a family of generalized distributions. The multivariate distributions we highlight the importance of applications in data modeling in various field of knowledge. However, there is the existence of few distributions that model heavier tails and asymmetry situations. This study aimed to study the class of generalized distributions Kumaraswamy deduct the normal distribution bivariate Kumaraswamy, present the likelihood function and the expressions of their estimators. Implemented the estimation procedure using the scores functions in textit software R and a simulation approach. We evaluated the simulated data estimation and also in real application examples with asymmetric distribution. It can be concluded therefore that the normal distribution bivariate Kumaraswamy was deduced in relation to their joint density function, marginal, conditional and implemented for the simulation study. The estimators behaved precisely, consistent and unbiased. The normal distribution bivariate Kumarawamy adjusted satisfactorily to the actual data of average temperature and total precipitation. |
| publishDate |
2015 |
| dc.date.issued.fl_str_mv |
2015-04-16 |
| dc.date.accessioned.fl_str_mv |
2016-06-20T21:43:07Z |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MONTEIRO, Michelle Aparecida Corrêa. Distribuição normal de Kumaraswamy bivariada. 2015. 65 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2015. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.unifal-mg.edu.br/handle/123456789/833 |
| identifier_str_mv |
MONTEIRO, Michelle Aparecida Corrêa. Distribuição normal de Kumaraswamy bivariada. 2015. 65 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2015. |
| url |
https://repositorio.unifal-mg.edu.br/handle/123456789/833 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.department.fl_str_mv |
-8156311678363143599 |
| dc.relation.confidence.fl_str_mv |
600 600 600 |
| dc.relation.cnpq.fl_str_mv |
-2104850853990363200 |
| dc.relation.sponsorship.fl_str_mv |
8119421590424746971 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Estatística Aplicada e Biometria |
| dc.publisher.initials.fl_str_mv |
UNIFAL-MG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Ciências Exatas |
| publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL instname:Universidade Federal de Alfenas (UNIFAL) instacron:UNIFAL |
| instname_str |
Universidade Federal de Alfenas (UNIFAL) |
| instacron_str |
UNIFAL |
| institution |
UNIFAL |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| collection |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| bitstream.url.fl_str_mv |
https://repositorio.unifal-mg.edu.br/bitstreams/08cb88d7-730a-4de4-95b3-7ea08d53265e/download https://repositorio.unifal-mg.edu.br/bitstreams/bb3c435a-25cb-496f-b4df-f914bcebf1a6/download https://repositorio.unifal-mg.edu.br/bitstreams/3f2a9fd8-27ec-476e-b262-a063f40eb5f1/download https://repositorio.unifal-mg.edu.br/bitstreams/c896c71c-9807-468f-9d1d-f1e60e7ed3cd/download https://repositorio.unifal-mg.edu.br/bitstreams/499537bf-5300-448b-a7c2-796fe9b39176/download https://repositorio.unifal-mg.edu.br/bitstreams/62345739-3b71-4071-94ab-e68409b10d67/download https://repositorio.unifal-mg.edu.br/bitstreams/0b850925-7ebb-4682-86d1-9b5fc695bda2/download |
| bitstream.checksum.fl_str_mv |
31555718c4fc75849dd08f27935d4f6b 4afdbb8c545fd630ea7db775da747b2f ef48816a10f2d45f2e2fee2f478e2faf 9da0b6dfac957114c6a7714714b86306 e97dfe97f083c02509260be782bd1512 38ba05faeb563e545b5882cb7f1f19f9 5c933d42cca0eed3282a5afdb0f596f4 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL) |
| repository.mail.fl_str_mv |
bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br |
| _version_ |
1850508408698961920 |