Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Batista, Gislene lattes
Orientador(a): Cassanjes, Fábia Castro lattes
Banca de defesa: Poirier, Gaël Yves, Rocha, Lucas Alonso
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alfenas
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência e Engenharia de Materiais
Departamento: Instituto de Ciência e Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifal-mg.edu.br/handle/123456789/2156
Resumo: This research proposed a method to prepare glass-ceramics by the incorporation of nanocrystals of lanthanum niobate (LaNbO4) in a tellurite glass. These nanocrystals doped with Eu3+ were prepared by spray-pyrolysis method. The glass-ceramic was made by the incorporation of the nanocrystals in glasses with different molar compositions of the system TeO2-GeO2-Nb2O5-K2O-Li2O using two different methods of incorporating. For some of the glass-ceramics, before the incorporation, the nanocrystals suffered a thermal treatment. By the visual analysis, it was noticed that the nanocrystals gave opacity to the material depending on the percentage incorporated, and that with the time’s raising, or increase of incorporation temperature they became transparent. In addition, that with the thermal treatment in the nanocrystals was realized what it is possible the presence of the nanocrystals’ aggregate in the glass. By the thermal analysis were observed the increase in glass transition temperature values ​​with the time of permanence of the material in the furnace that could indicate the dispersion and the dissolution of nanocrystals; and this value did not change in the glass-ceramics with the nanocrystals’ aggregate. The high transparency window of these materials was observed by ultraviolet-visible absorption spectroscopy and infrared transmittance spectroscopy. No crystalline peaks were detected in X ray diffractogram for most of the samples probably because of the low percentage of nanocrystals, but the peaks of lanthanum niobate monoclinic phase were identified in the glass-ceramic within less time in the furnace. Raman spectroscopy did not show difference between the samples and the glasses. In the photoluminescence analysis, the peaks were widened in the analyzed samples, especially in that without thermal treatment in nanocrystals, probably because of the Eu3+ dispersion in the glass. Besides, difference in the more effective wavelength for luminescence was observed among the samples, possibly because of the difference in the cut off wavelengths absorption. By luminescence parameters, it was realized that the samples that remained less time in the furnace and with the nanocrystals’ aggregate had larger values ​​of quantum efficiency.
id UNIFAL_c58a09f406f38397592dfd7854fc58f3
oai_identifier_str oai:repositorio.unifal-mg.edu.br:123456789/2156
network_acronym_str UNIFAL
network_name_str Biblioteca Digital de Teses e Dissertações da UNIFAL
repository_id_str
spelling Batista, Gislenehttp://lattes.cnpq.br/1332735257013789Pereira, Camilahttp://lattes.cnpq.br/6323202702376210Poirier, Gaël YvesRocha, Lucas AlonsoCassanjes, Fábia Castrohttp://lattes.cnpq.br/58149947614102632023-01-04T13:15:09Z2018-08-22BATISTA, Gislene. Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional. 2018. 134 f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Universidade Federal de Alfenas, Poços de Caldas, MG, 2018.https://repositorio.unifal-mg.edu.br/handle/123456789/2156This research proposed a method to prepare glass-ceramics by the incorporation of nanocrystals of lanthanum niobate (LaNbO4) in a tellurite glass. These nanocrystals doped with Eu3+ were prepared by spray-pyrolysis method. The glass-ceramic was made by the incorporation of the nanocrystals in glasses with different molar compositions of the system TeO2-GeO2-Nb2O5-K2O-Li2O using two different methods of incorporating. For some of the glass-ceramics, before the incorporation, the nanocrystals suffered a thermal treatment. By the visual analysis, it was noticed that the nanocrystals gave opacity to the material depending on the percentage incorporated, and that with the time’s raising, or increase of incorporation temperature they became transparent. In addition, that with the thermal treatment in the nanocrystals was realized what it is possible the presence of the nanocrystals’ aggregate in the glass. By the thermal analysis were observed the increase in glass transition temperature values ​​with the time of permanence of the material in the furnace that could indicate the dispersion and the dissolution of nanocrystals; and this value did not change in the glass-ceramics with the nanocrystals’ aggregate. The high transparency window of these materials was observed by ultraviolet-visible absorption spectroscopy and infrared transmittance spectroscopy. No crystalline peaks were detected in X ray diffractogram for most of the samples probably because of the low percentage of nanocrystals, but the peaks of lanthanum niobate monoclinic phase were identified in the glass-ceramic within less time in the furnace. Raman spectroscopy did not show difference between the samples and the glasses. In the photoluminescence analysis, the peaks were widened in the analyzed samples, especially in that without thermal treatment in nanocrystals, probably because of the Eu3+ dispersion in the glass. Besides, difference in the more effective wavelength for luminescence was observed among the samples, possibly because of the difference in the cut off wavelengths absorption. By luminescence parameters, it was realized that the samples that remained less time in the furnace and with the nanocrystals’ aggregate had larger values ​​of quantum efficiency.Neste trabalho foi proposto um método para obtenção de vitrocerâmicas pela incorporação de nanocristais de niobato de lantânio (LaNbO4) em vidro telurito. Estes nanocristais dopados com Eu3+ foram obtidos pelo método de pirólise de aerossol. A obtenção das vitrocerâmicas foi realizada pela incorporação dos nanocristais em três vidros de diferentes composições molares do sistema TeO2-GeO2-Nb2O5-K2O-Li2O a partir de dois diferentes métodos de incorporação. Para algumas das vitrocerâmicas foi aplicado tratamento térmico nos nanocristais antes da incorporação. Pela análise visual foi percebido que os nanocristais sem este tratamento térmico conferiram opacidade ao material dependendo do percentual incorporado, e que com o maior tempo de permanência no forno, ou aumento da temperatura de incorporação estas se tornaram visualmente transparentes. Quando os nanocristais passaram pelo tratamento térmico, visualmente foi percebido possivelmente agregados destes nanocristais no vidro correspondente. Pela análise térmica observou-se o aumento nos valores de temperatura de transição vítrea com o aumento do tempo de permanência do material no forno podendo indicar uma possível dispersão concomitante a uma dissolução; e que não há mudança significativa deste parâmetro nas vitrocerâmicas que se percebeu visualmente a presença dos agregados dos nanocristais. Pelas espectroscopias de absorção nas regiões do ultravioleta-visível e transmissão no infravermelho foi identificada uma alta janela de transparência dos materiais. Não foi possível a identificação de picos cristalinos no difratograma de raios X em grande parte das amostras obtidas provavelmente devido ao baixo percentual incorporado, mas nas amostras que permaneceram menos tempo no forno foi possível a identificação da fase monoclínica do niobato de lantânio. Pelo Raman não foi identificada mudança estrutural entre os vidros e os materiais obtidos. Na análise de fotoluminescência os picos apresentaram alargamento, principalmente nas amostras em que os nanocristais estavam sem tratamento térmico prévio, provavelmente devido a presença de íons Eu3+ que se dispersaram estando presente no meio vítreo. Além disso, foram identificadas diferenças entre o comprimento de excitação mais efetivo para a luminescência entre as amostras devido aos diferentes comprimentos de onda de corte de absorção. Pelos cálculos de luminescência percebeu-se que, as amostras que permaneceram menos tempo no forno ou as que observou-se os agregados de nanocristais, se encontravam com valores maiores de eficiências quânticas.application/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Ciência e Engenharia de MateriaisUNIFAL-MGBrasilInstituto de Ciência e Tecnologiainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Vidro.Vidros óticos.Luminescência.Raman, Espectroscopia de.Európio.MATERIAIS NAO METALICOS::CERAMICOSIncorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcionalIncorporation of lanthanum niobate nanocrystals in tellurite glass in order to obtain functional glass-ceramicinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-42974172594986389316006004833842504434367204reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALBatista, GisleneLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/7149f013-6c0e-4ead-82a4-fbe38328a72f/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/42f3fb88-6ec5-4625-9d55-ba4a77b9b00f/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/a7c4bb5c-e256-44a3-a34f-467290b6cd03/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/c1b3a805-1d32-45d8-b562-5b2a5facbe23/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertacao_GisleneBatista_2018_PPGCEM.pdfDissertacao_GisleneBatista_2018_PPGCEM.pdfapplication/pdf2879472https://repositorio.unifal-mg.edu.br/bitstreams/ca800706-d03c-4b43-bb26-7e4b5968d406/downloadbcd59676a951c586e554877a3a0a7a04MD55TEXTDissertacao_GisleneBatista_2018_PPGCEM.pdf.txtDissertacao_GisleneBatista_2018_PPGCEM.pdf.txtExtracted texttext/plain103039https://repositorio.unifal-mg.edu.br/bitstreams/002d484c-e8f2-448a-8d36-dfff03d081e8/download2de6c11cce929f27545965e6632a8285MD56THUMBNAILDissertacao_GisleneBatista_2018_PPGCEM.pdf.jpgDissertacao_GisleneBatista_2018_PPGCEM.pdf.jpgGenerated Thumbnailimage/jpeg2592https://repositorio.unifal-mg.edu.br/bitstreams/50c5f35e-744d-458c-beab-e46db841d5a3/download0b2d173c51a19f2c1b5b8e5326f133e6MD57123456789/21562025-04-14 17:32:36.037http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/2156https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T20:32:36Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.pt-BR.fl_str_mv Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional
dc.title.alternative.eng.fl_str_mv Incorporation of lanthanum niobate nanocrystals in tellurite glass in order to obtain functional glass-ceramic
title Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional
spellingShingle Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional
Batista, Gislene
Vidro.
Vidros óticos.
Luminescência.
Raman, Espectroscopia de.
Európio.
MATERIAIS NAO METALICOS::CERAMICOS
title_short Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional
title_full Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional
title_fullStr Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional
title_full_unstemmed Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional
title_sort Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional
author Batista, Gislene
author_facet Batista, Gislene
author_role author
dc.contributor.author.fl_str_mv Batista, Gislene
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1332735257013789
dc.contributor.advisor-co1.fl_str_mv Pereira, Camila
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6323202702376210
dc.contributor.referee1.fl_str_mv Poirier, Gaël Yves
dc.contributor.referee2.fl_str_mv Rocha, Lucas Alonso
dc.contributor.advisor1.fl_str_mv Cassanjes, Fábia Castro
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5814994761410263
contributor_str_mv Pereira, Camila
Poirier, Gaël Yves
Rocha, Lucas Alonso
Cassanjes, Fábia Castro
dc.subject.por.fl_str_mv Vidro.
Vidros óticos.
Luminescência.
Raman, Espectroscopia de.
Európio.
topic Vidro.
Vidros óticos.
Luminescência.
Raman, Espectroscopia de.
Európio.
MATERIAIS NAO METALICOS::CERAMICOS
dc.subject.cnpq.fl_str_mv MATERIAIS NAO METALICOS::CERAMICOS
description This research proposed a method to prepare glass-ceramics by the incorporation of nanocrystals of lanthanum niobate (LaNbO4) in a tellurite glass. These nanocrystals doped with Eu3+ were prepared by spray-pyrolysis method. The glass-ceramic was made by the incorporation of the nanocrystals in glasses with different molar compositions of the system TeO2-GeO2-Nb2O5-K2O-Li2O using two different methods of incorporating. For some of the glass-ceramics, before the incorporation, the nanocrystals suffered a thermal treatment. By the visual analysis, it was noticed that the nanocrystals gave opacity to the material depending on the percentage incorporated, and that with the time’s raising, or increase of incorporation temperature they became transparent. In addition, that with the thermal treatment in the nanocrystals was realized what it is possible the presence of the nanocrystals’ aggregate in the glass. By the thermal analysis were observed the increase in glass transition temperature values ​​with the time of permanence of the material in the furnace that could indicate the dispersion and the dissolution of nanocrystals; and this value did not change in the glass-ceramics with the nanocrystals’ aggregate. The high transparency window of these materials was observed by ultraviolet-visible absorption spectroscopy and infrared transmittance spectroscopy. No crystalline peaks were detected in X ray diffractogram for most of the samples probably because of the low percentage of nanocrystals, but the peaks of lanthanum niobate monoclinic phase were identified in the glass-ceramic within less time in the furnace. Raman spectroscopy did not show difference between the samples and the glasses. In the photoluminescence analysis, the peaks were widened in the analyzed samples, especially in that without thermal treatment in nanocrystals, probably because of the Eu3+ dispersion in the glass. Besides, difference in the more effective wavelength for luminescence was observed among the samples, possibly because of the difference in the cut off wavelengths absorption. By luminescence parameters, it was realized that the samples that remained less time in the furnace and with the nanocrystals’ aggregate had larger values ​​of quantum efficiency.
publishDate 2018
dc.date.issued.fl_str_mv 2018-08-22
dc.date.accessioned.fl_str_mv 2023-01-04T13:15:09Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BATISTA, Gislene. Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional. 2018. 134 f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Universidade Federal de Alfenas, Poços de Caldas, MG, 2018.
dc.identifier.uri.fl_str_mv https://repositorio.unifal-mg.edu.br/handle/123456789/2156
identifier_str_mv BATISTA, Gislene. Incorporação de nanopartículas cristalinas de niobato de lantânio em vidro telurito para obtenção de vitrocerâmica funcional. 2018. 134 f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Universidade Federal de Alfenas, Poços de Caldas, MG, 2018.
url https://repositorio.unifal-mg.edu.br/handle/123456789/2156
dc.language.iso.fl_str_mv por
language por
dc.relation.department.fl_str_mv -4297417259498638931
dc.relation.confidence.fl_str_mv 600
600
dc.relation.cnpq.fl_str_mv 4833842504434367204
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Engenharia de Materiais
dc.publisher.initials.fl_str_mv UNIFAL-MG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciência e Tecnologia
publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL
instname:Universidade Federal de Alfenas (UNIFAL)
instacron:UNIFAL
instname_str Universidade Federal de Alfenas (UNIFAL)
instacron_str UNIFAL
institution UNIFAL
reponame_str Biblioteca Digital de Teses e Dissertações da UNIFAL
collection Biblioteca Digital de Teses e Dissertações da UNIFAL
bitstream.url.fl_str_mv https://repositorio.unifal-mg.edu.br/bitstreams/7149f013-6c0e-4ead-82a4-fbe38328a72f/download
https://repositorio.unifal-mg.edu.br/bitstreams/42f3fb88-6ec5-4625-9d55-ba4a77b9b00f/download
https://repositorio.unifal-mg.edu.br/bitstreams/a7c4bb5c-e256-44a3-a34f-467290b6cd03/download
https://repositorio.unifal-mg.edu.br/bitstreams/c1b3a805-1d32-45d8-b562-5b2a5facbe23/download
https://repositorio.unifal-mg.edu.br/bitstreams/ca800706-d03c-4b43-bb26-7e4b5968d406/download
https://repositorio.unifal-mg.edu.br/bitstreams/002d484c-e8f2-448a-8d36-dfff03d081e8/download
https://repositorio.unifal-mg.edu.br/bitstreams/50c5f35e-744d-458c-beab-e46db841d5a3/download
bitstream.checksum.fl_str_mv 31555718c4fc75849dd08f27935d4f6b
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bcd59676a951c586e554877a3a0a7a04
2de6c11cce929f27545965e6632a8285
0b2d173c51a19f2c1b5b8e5326f133e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)
repository.mail.fl_str_mv bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br
_version_ 1850508399787114496