Inferência probabilística para seguro paramétrico

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Branco, Karoline Pereira lattes
Orientador(a): Beijo, Luiz Alberto
Banca de defesa: Marques, Reinaldo Antônio Gomes, Liska, Gilberto Rodrigues, Fonseca, Thais Cristina De Oliveira Da, Carvalho, Helton Graziadei De
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alfenas
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística Aplicada e Biometria
Departamento: Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifal-mg.edu.br/handle/123456789/2297
Resumo: The objective of this work was to develop and apply a modeling method for parametric agricultural insurance contracts with coverage for the occurrence of extreme weather events, aiming at determining indemnity triggers with reduced base risk. The proposed method used the generalized distribution of extreme values (GEV) to model extreme weather events and used the exceedance probabilities found for the extreme quantiles as an explanatory variable for a logistic model that predicts crop losses. Bayesian inference was applied to estimate the parameters of the GEV distribution and the coefficients of the logistic model. Subsequently, the accuracy and cost for the insurer and insured for all possible contractual triggers were verified, with the intention of providing a technical basis for the contract manager to identify the safest trigger and with viable costs for the product. After presenting the method, a case study was carried out aiming at its application for the elaboration of a contract for the protection of coffee plantations against the occurrence of extreme dry spells during the flowering period in some cities of the State of Minas Gerais. Two models were fitted, one with an informative a priori distribution for estimating the parameters of the GEV distributions and the other with a non-informative a priori distribution. The results found were promising. The proposed model showed 87.5% accuracy for the two a priori distribution structures when relating the weather event to the occurrence of crop losses, even in a scenario of scarce data. In addition, with the informative a priori use, it was possible to find an optimal trigger to relate the climatic event and the occurrence of losses and that brought a viable cost of commercialization for both agents involved. The use of the Bayesian inferential approach made it possible, through credibility intervals, for the uncertainty of the process to be quantified with reasonable precision in all stages of the modeling, providing a greater degree of basis for the contract managers to make decisions. It is concluded that the method proposed here proved to be promising and can be adapted for contracts of different cultures and climatic events.
id UNIFAL_c8c77d575b9c43c92feafbb54d852ba1
oai_identifier_str oai:repositorio.unifal-mg.edu.br:123456789/2297
network_acronym_str UNIFAL
network_name_str Biblioteca Digital de Teses e Dissertações da UNIFAL
repository_id_str
spelling Branco, Karoline PereiraMarques, Reinaldo Antônio GomesMarques, Reinaldo Antônio GomesLiska, Gilberto RodriguesFonseca, Thais Cristina De Oliveira DaCarvalho, Helton Graziadei DeBeijo, Luiz Albertohttp://lattes.cnpq.br/01242211772521872023-08-23T19:17:13Z2023-06-29BRANCO, Karoline Pereira. Inferência probabilística para seguro paramétrico. 2023. 81 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2023.https://repositorio.unifal-mg.edu.br/handle/123456789/2297The objective of this work was to develop and apply a modeling method for parametric agricultural insurance contracts with coverage for the occurrence of extreme weather events, aiming at determining indemnity triggers with reduced base risk. The proposed method used the generalized distribution of extreme values (GEV) to model extreme weather events and used the exceedance probabilities found for the extreme quantiles as an explanatory variable for a logistic model that predicts crop losses. Bayesian inference was applied to estimate the parameters of the GEV distribution and the coefficients of the logistic model. Subsequently, the accuracy and cost for the insurer and insured for all possible contractual triggers were verified, with the intention of providing a technical basis for the contract manager to identify the safest trigger and with viable costs for the product. After presenting the method, a case study was carried out aiming at its application for the elaboration of a contract for the protection of coffee plantations against the occurrence of extreme dry spells during the flowering period in some cities of the State of Minas Gerais. Two models were fitted, one with an informative a priori distribution for estimating the parameters of the GEV distributions and the other with a non-informative a priori distribution. The results found were promising. The proposed model showed 87.5% accuracy for the two a priori distribution structures when relating the weather event to the occurrence of crop losses, even in a scenario of scarce data. In addition, with the informative a priori use, it was possible to find an optimal trigger to relate the climatic event and the occurrence of losses and that brought a viable cost of commercialization for both agents involved. The use of the Bayesian inferential approach made it possible, through credibility intervals, for the uncertainty of the process to be quantified with reasonable precision in all stages of the modeling, providing a greater degree of basis for the contract managers to make decisions. It is concluded that the method proposed here proved to be promising and can be adapted for contracts of different cultures and climatic events.O objetivo deste trabalho foi elaborar e aplicar um método de modelagem para contratos de seguros agrícolas paramétricos com cobertura para a ocorrência de eventos climáticos extremos, visando a determinação de gatilhos indenizatórios com risco base reduzido. O método proposto utilizou a distribuição generalizada de valores extremos (GEV) para modelar os eventos climáticos extremos e empregou as probabilidades de excedência encontradas para os quantis extremos como variável explicativa de um modelo logístico previsor de perdas na safra. A inferência bayesiana foi aplicada para a estimação dos parâmetros da distribuição GEV e dos coeficientes do modelo logístico. Posteriormente, verificou-se a acurácia e o custo para seguradora e segurado para todos os possíveis gatilhos contratuais, com a intenção de fornecer embasamento técnico para que o gestor do contrato identifique o gatilho mais seguro e com custos viáveis para o produto. Após a apresentação do método foi realizado um estudo de caso visando a sua aplicação para a elaboração de um contrato para a proteção de lavouras de café contra a ocorrência de veranicos extremos no período da florada em algumas cidades do Estado de Minas Gerais. Foram ajustados dois modelos, um com distribuição a priori informativa para a estimação dos parâmetros das distribuições GEV e outro com distribuição a priori não informativa. Os resultados encontrados foram promissores. O modelo proposto apresentou 87,5% de acurácia para as duas estruturas de distribuição a priori ao relacionar o evento climático com a ocorrência de perdas na safra, mesmo em um cenário de escassez de dados. Além disso, com a utilização a priori informativa foi possível encontrar um gatilho ótimo em relacionar o evento climático e a ocorrência de perdas e que trouxe um custo viável de comercialização para ambos os agentes envolvidos. A utilização da abordagem inferencial bayesiana possibilitou, por meio de intervalos de credibilidade, que a incerteza do processo fosse quantificada com precisão razoável em todas as etapas da modelagem, fornecendo maior grau de embasamento para os gestores do contrato tomarem decisões. Conclui-se que o método aqui proposto mostrou-se promissor e pode ser adaptado para contratos de diferentes culturas e eventos climáticos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Inferência bayesianaPrecificação atuarialDistribuição GEV.Gerenciamento de risco climáticoPROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADASInferência probabilística para seguro paramétricoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600600-21048508539903632002075167498588264571reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALBranco, Karoline PereiraLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/a272ce37-81fd-42b3-bfc2-6e2e8b6347c4/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/321edf27-700c-46d1-99ec-16f160ac6547/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/a91c7b1e-75af-4598-80af-c541367753b7/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/ba93a524-fa00-4bbb-8181-d747e63ed06f/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação de Karoline Pereira Branco.pdfDissertação de Karoline Pereira Branco.pdfapplication/pdf2890609https://repositorio.unifal-mg.edu.br/bitstreams/6ad26e42-8eec-4265-944d-effe2f24bb55/download70dc5f04be9842f0e398a307603565c6MD55TEXTDissertação de Karoline Pereira Branco.pdf.txtDissertação de Karoline Pereira Branco.pdf.txtExtracted texttext/plain104955https://repositorio.unifal-mg.edu.br/bitstreams/a7772816-0a85-4d28-ba64-95c8597b2f26/downloadb1ca1b6d97165cc40a34c255bcf4e242MD58THUMBNAILDissertação de Karoline Pereira Branco.pdf.jpgDissertação de Karoline Pereira Branco.pdf.jpgGenerated Thumbnailimage/jpeg2447https://repositorio.unifal-mg.edu.br/bitstreams/beab76d9-1c24-4e3c-841d-d199a23807c2/downloadae8f4b5a043179697217c8e2324432c3MD59123456789/22972025-04-14 09:55:07.714http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/2297https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T12:55:07Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.pt-BR.fl_str_mv Inferência probabilística para seguro paramétrico
title Inferência probabilística para seguro paramétrico
spellingShingle Inferência probabilística para seguro paramétrico
Branco, Karoline Pereira
Inferência bayesiana
Precificação atuarial
Distribuição GEV.
Gerenciamento de risco climático
PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
title_short Inferência probabilística para seguro paramétrico
title_full Inferência probabilística para seguro paramétrico
title_fullStr Inferência probabilística para seguro paramétrico
title_full_unstemmed Inferência probabilística para seguro paramétrico
title_sort Inferência probabilística para seguro paramétrico
author Branco, Karoline Pereira
author_facet Branco, Karoline Pereira
author_role author
dc.contributor.author.fl_str_mv Branco, Karoline Pereira
dc.contributor.advisor-co1.fl_str_mv Marques, Reinaldo Antônio Gomes
dc.contributor.referee1.fl_str_mv Marques, Reinaldo Antônio Gomes
dc.contributor.referee2.fl_str_mv Liska, Gilberto Rodrigues
dc.contributor.referee3.fl_str_mv Fonseca, Thais Cristina De Oliveira Da
dc.contributor.referee4.fl_str_mv Carvalho, Helton Graziadei De
dc.contributor.advisor1.fl_str_mv Beijo, Luiz Alberto
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0124221177252187
contributor_str_mv Marques, Reinaldo Antônio Gomes
Marques, Reinaldo Antônio Gomes
Liska, Gilberto Rodrigues
Fonseca, Thais Cristina De Oliveira Da
Carvalho, Helton Graziadei De
Beijo, Luiz Alberto
dc.subject.por.fl_str_mv Inferência bayesiana
Precificação atuarial
Distribuição GEV.
Gerenciamento de risco climático
topic Inferência bayesiana
Precificação atuarial
Distribuição GEV.
Gerenciamento de risco climático
PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
dc.subject.cnpq.fl_str_mv PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
description The objective of this work was to develop and apply a modeling method for parametric agricultural insurance contracts with coverage for the occurrence of extreme weather events, aiming at determining indemnity triggers with reduced base risk. The proposed method used the generalized distribution of extreme values (GEV) to model extreme weather events and used the exceedance probabilities found for the extreme quantiles as an explanatory variable for a logistic model that predicts crop losses. Bayesian inference was applied to estimate the parameters of the GEV distribution and the coefficients of the logistic model. Subsequently, the accuracy and cost for the insurer and insured for all possible contractual triggers were verified, with the intention of providing a technical basis for the contract manager to identify the safest trigger and with viable costs for the product. After presenting the method, a case study was carried out aiming at its application for the elaboration of a contract for the protection of coffee plantations against the occurrence of extreme dry spells during the flowering period in some cities of the State of Minas Gerais. Two models were fitted, one with an informative a priori distribution for estimating the parameters of the GEV distributions and the other with a non-informative a priori distribution. The results found were promising. The proposed model showed 87.5% accuracy for the two a priori distribution structures when relating the weather event to the occurrence of crop losses, even in a scenario of scarce data. In addition, with the informative a priori use, it was possible to find an optimal trigger to relate the climatic event and the occurrence of losses and that brought a viable cost of commercialization for both agents involved. The use of the Bayesian inferential approach made it possible, through credibility intervals, for the uncertainty of the process to be quantified with reasonable precision in all stages of the modeling, providing a greater degree of basis for the contract managers to make decisions. It is concluded that the method proposed here proved to be promising and can be adapted for contracts of different cultures and climatic events.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-08-23T19:17:13Z
dc.date.issued.fl_str_mv 2023-06-29
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BRANCO, Karoline Pereira. Inferência probabilística para seguro paramétrico. 2023. 81 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2023.
dc.identifier.uri.fl_str_mv https://repositorio.unifal-mg.edu.br/handle/123456789/2297
identifier_str_mv BRANCO, Karoline Pereira. Inferência probabilística para seguro paramétrico. 2023. 81 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2023.
url https://repositorio.unifal-mg.edu.br/handle/123456789/2297
dc.language.iso.fl_str_mv por
language por
dc.relation.department.fl_str_mv -8156311678363143599
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.cnpq.fl_str_mv -2104850853990363200
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística Aplicada e Biometria
dc.publisher.initials.fl_str_mv UNIFAL-MG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL
instname:Universidade Federal de Alfenas (UNIFAL)
instacron:UNIFAL
instname_str Universidade Federal de Alfenas (UNIFAL)
instacron_str UNIFAL
institution UNIFAL
reponame_str Biblioteca Digital de Teses e Dissertações da UNIFAL
collection Biblioteca Digital de Teses e Dissertações da UNIFAL
bitstream.url.fl_str_mv https://repositorio.unifal-mg.edu.br/bitstreams/a272ce37-81fd-42b3-bfc2-6e2e8b6347c4/download
https://repositorio.unifal-mg.edu.br/bitstreams/321edf27-700c-46d1-99ec-16f160ac6547/download
https://repositorio.unifal-mg.edu.br/bitstreams/a91c7b1e-75af-4598-80af-c541367753b7/download
https://repositorio.unifal-mg.edu.br/bitstreams/ba93a524-fa00-4bbb-8181-d747e63ed06f/download
https://repositorio.unifal-mg.edu.br/bitstreams/6ad26e42-8eec-4265-944d-effe2f24bb55/download
https://repositorio.unifal-mg.edu.br/bitstreams/a7772816-0a85-4d28-ba64-95c8597b2f26/download
https://repositorio.unifal-mg.edu.br/bitstreams/beab76d9-1c24-4e3c-841d-d199a23807c2/download
bitstream.checksum.fl_str_mv 31555718c4fc75849dd08f27935d4f6b
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
70dc5f04be9842f0e398a307603565c6
b1ca1b6d97165cc40a34c255bcf4e242
ae8f4b5a043179697217c8e2324432c3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)
repository.mail.fl_str_mv bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br
_version_ 1850508385456226304