Inferência probabilística para seguro paramétrico
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Alfenas
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Estatística Aplicada e Biometria
|
| Departamento: |
Instituto de Ciências Exatas
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.unifal-mg.edu.br/handle/123456789/2297 |
Resumo: | The objective of this work was to develop and apply a modeling method for parametric agricultural insurance contracts with coverage for the occurrence of extreme weather events, aiming at determining indemnity triggers with reduced base risk. The proposed method used the generalized distribution of extreme values (GEV) to model extreme weather events and used the exceedance probabilities found for the extreme quantiles as an explanatory variable for a logistic model that predicts crop losses. Bayesian inference was applied to estimate the parameters of the GEV distribution and the coefficients of the logistic model. Subsequently, the accuracy and cost for the insurer and insured for all possible contractual triggers were verified, with the intention of providing a technical basis for the contract manager to identify the safest trigger and with viable costs for the product. After presenting the method, a case study was carried out aiming at its application for the elaboration of a contract for the protection of coffee plantations against the occurrence of extreme dry spells during the flowering period in some cities of the State of Minas Gerais. Two models were fitted, one with an informative a priori distribution for estimating the parameters of the GEV distributions and the other with a non-informative a priori distribution. The results found were promising. The proposed model showed 87.5% accuracy for the two a priori distribution structures when relating the weather event to the occurrence of crop losses, even in a scenario of scarce data. In addition, with the informative a priori use, it was possible to find an optimal trigger to relate the climatic event and the occurrence of losses and that brought a viable cost of commercialization for both agents involved. The use of the Bayesian inferential approach made it possible, through credibility intervals, for the uncertainty of the process to be quantified with reasonable precision in all stages of the modeling, providing a greater degree of basis for the contract managers to make decisions. It is concluded that the method proposed here proved to be promising and can be adapted for contracts of different cultures and climatic events. |
| id |
UNIFAL_c8c77d575b9c43c92feafbb54d852ba1 |
|---|---|
| oai_identifier_str |
oai:repositorio.unifal-mg.edu.br:123456789/2297 |
| network_acronym_str |
UNIFAL |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| repository_id_str |
|
| spelling |
Branco, Karoline PereiraMarques, Reinaldo Antônio GomesMarques, Reinaldo Antônio GomesLiska, Gilberto RodriguesFonseca, Thais Cristina De Oliveira DaCarvalho, Helton Graziadei DeBeijo, Luiz Albertohttp://lattes.cnpq.br/01242211772521872023-08-23T19:17:13Z2023-06-29BRANCO, Karoline Pereira. Inferência probabilística para seguro paramétrico. 2023. 81 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2023.https://repositorio.unifal-mg.edu.br/handle/123456789/2297The objective of this work was to develop and apply a modeling method for parametric agricultural insurance contracts with coverage for the occurrence of extreme weather events, aiming at determining indemnity triggers with reduced base risk. The proposed method used the generalized distribution of extreme values (GEV) to model extreme weather events and used the exceedance probabilities found for the extreme quantiles as an explanatory variable for a logistic model that predicts crop losses. Bayesian inference was applied to estimate the parameters of the GEV distribution and the coefficients of the logistic model. Subsequently, the accuracy and cost for the insurer and insured for all possible contractual triggers were verified, with the intention of providing a technical basis for the contract manager to identify the safest trigger and with viable costs for the product. After presenting the method, a case study was carried out aiming at its application for the elaboration of a contract for the protection of coffee plantations against the occurrence of extreme dry spells during the flowering period in some cities of the State of Minas Gerais. Two models were fitted, one with an informative a priori distribution for estimating the parameters of the GEV distributions and the other with a non-informative a priori distribution. The results found were promising. The proposed model showed 87.5% accuracy for the two a priori distribution structures when relating the weather event to the occurrence of crop losses, even in a scenario of scarce data. In addition, with the informative a priori use, it was possible to find an optimal trigger to relate the climatic event and the occurrence of losses and that brought a viable cost of commercialization for both agents involved. The use of the Bayesian inferential approach made it possible, through credibility intervals, for the uncertainty of the process to be quantified with reasonable precision in all stages of the modeling, providing a greater degree of basis for the contract managers to make decisions. It is concluded that the method proposed here proved to be promising and can be adapted for contracts of different cultures and climatic events.O objetivo deste trabalho foi elaborar e aplicar um método de modelagem para contratos de seguros agrícolas paramétricos com cobertura para a ocorrência de eventos climáticos extremos, visando a determinação de gatilhos indenizatórios com risco base reduzido. O método proposto utilizou a distribuição generalizada de valores extremos (GEV) para modelar os eventos climáticos extremos e empregou as probabilidades de excedência encontradas para os quantis extremos como variável explicativa de um modelo logístico previsor de perdas na safra. A inferência bayesiana foi aplicada para a estimação dos parâmetros da distribuição GEV e dos coeficientes do modelo logístico. Posteriormente, verificou-se a acurácia e o custo para seguradora e segurado para todos os possíveis gatilhos contratuais, com a intenção de fornecer embasamento técnico para que o gestor do contrato identifique o gatilho mais seguro e com custos viáveis para o produto. Após a apresentação do método foi realizado um estudo de caso visando a sua aplicação para a elaboração de um contrato para a proteção de lavouras de café contra a ocorrência de veranicos extremos no período da florada em algumas cidades do Estado de Minas Gerais. Foram ajustados dois modelos, um com distribuição a priori informativa para a estimação dos parâmetros das distribuições GEV e outro com distribuição a priori não informativa. Os resultados encontrados foram promissores. O modelo proposto apresentou 87,5% de acurácia para as duas estruturas de distribuição a priori ao relacionar o evento climático com a ocorrência de perdas na safra, mesmo em um cenário de escassez de dados. Além disso, com a utilização a priori informativa foi possível encontrar um gatilho ótimo em relacionar o evento climático e a ocorrência de perdas e que trouxe um custo viável de comercialização para ambos os agentes envolvidos. A utilização da abordagem inferencial bayesiana possibilitou, por meio de intervalos de credibilidade, que a incerteza do processo fosse quantificada com precisão razoável em todas as etapas da modelagem, fornecendo maior grau de embasamento para os gestores do contrato tomarem decisões. Conclui-se que o método aqui proposto mostrou-se promissor e pode ser adaptado para contratos de diferentes culturas e eventos climáticos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Inferência bayesianaPrecificação atuarialDistribuição GEV.Gerenciamento de risco climáticoPROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADASInferência probabilística para seguro paramétricoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600600-21048508539903632002075167498588264571reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALBranco, Karoline PereiraLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/a272ce37-81fd-42b3-bfc2-6e2e8b6347c4/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/321edf27-700c-46d1-99ec-16f160ac6547/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/a91c7b1e-75af-4598-80af-c541367753b7/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/ba93a524-fa00-4bbb-8181-d747e63ed06f/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação de Karoline Pereira Branco.pdfDissertação de Karoline Pereira Branco.pdfapplication/pdf2890609https://repositorio.unifal-mg.edu.br/bitstreams/6ad26e42-8eec-4265-944d-effe2f24bb55/download70dc5f04be9842f0e398a307603565c6MD55TEXTDissertação de Karoline Pereira Branco.pdf.txtDissertação de Karoline Pereira Branco.pdf.txtExtracted texttext/plain104955https://repositorio.unifal-mg.edu.br/bitstreams/a7772816-0a85-4d28-ba64-95c8597b2f26/downloadb1ca1b6d97165cc40a34c255bcf4e242MD58THUMBNAILDissertação de Karoline Pereira Branco.pdf.jpgDissertação de Karoline Pereira Branco.pdf.jpgGenerated Thumbnailimage/jpeg2447https://repositorio.unifal-mg.edu.br/bitstreams/beab76d9-1c24-4e3c-841d-d199a23807c2/downloadae8f4b5a043179697217c8e2324432c3MD59123456789/22972025-04-14 09:55:07.714http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/2297https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T12:55:07Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.pt-BR.fl_str_mv |
Inferência probabilística para seguro paramétrico |
| title |
Inferência probabilística para seguro paramétrico |
| spellingShingle |
Inferência probabilística para seguro paramétrico Branco, Karoline Pereira Inferência bayesiana Precificação atuarial Distribuição GEV. Gerenciamento de risco climático PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| title_short |
Inferência probabilística para seguro paramétrico |
| title_full |
Inferência probabilística para seguro paramétrico |
| title_fullStr |
Inferência probabilística para seguro paramétrico |
| title_full_unstemmed |
Inferência probabilística para seguro paramétrico |
| title_sort |
Inferência probabilística para seguro paramétrico |
| author |
Branco, Karoline Pereira |
| author_facet |
Branco, Karoline Pereira |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Branco, Karoline Pereira |
| dc.contributor.advisor-co1.fl_str_mv |
Marques, Reinaldo Antônio Gomes |
| dc.contributor.referee1.fl_str_mv |
Marques, Reinaldo Antônio Gomes |
| dc.contributor.referee2.fl_str_mv |
Liska, Gilberto Rodrigues |
| dc.contributor.referee3.fl_str_mv |
Fonseca, Thais Cristina De Oliveira Da |
| dc.contributor.referee4.fl_str_mv |
Carvalho, Helton Graziadei De |
| dc.contributor.advisor1.fl_str_mv |
Beijo, Luiz Alberto |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0124221177252187 |
| contributor_str_mv |
Marques, Reinaldo Antônio Gomes Marques, Reinaldo Antônio Gomes Liska, Gilberto Rodrigues Fonseca, Thais Cristina De Oliveira Da Carvalho, Helton Graziadei De Beijo, Luiz Alberto |
| dc.subject.por.fl_str_mv |
Inferência bayesiana Precificação atuarial Distribuição GEV. Gerenciamento de risco climático |
| topic |
Inferência bayesiana Precificação atuarial Distribuição GEV. Gerenciamento de risco climático PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| dc.subject.cnpq.fl_str_mv |
PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| description |
The objective of this work was to develop and apply a modeling method for parametric agricultural insurance contracts with coverage for the occurrence of extreme weather events, aiming at determining indemnity triggers with reduced base risk. The proposed method used the generalized distribution of extreme values (GEV) to model extreme weather events and used the exceedance probabilities found for the extreme quantiles as an explanatory variable for a logistic model that predicts crop losses. Bayesian inference was applied to estimate the parameters of the GEV distribution and the coefficients of the logistic model. Subsequently, the accuracy and cost for the insurer and insured for all possible contractual triggers were verified, with the intention of providing a technical basis for the contract manager to identify the safest trigger and with viable costs for the product. After presenting the method, a case study was carried out aiming at its application for the elaboration of a contract for the protection of coffee plantations against the occurrence of extreme dry spells during the flowering period in some cities of the State of Minas Gerais. Two models were fitted, one with an informative a priori distribution for estimating the parameters of the GEV distributions and the other with a non-informative a priori distribution. The results found were promising. The proposed model showed 87.5% accuracy for the two a priori distribution structures when relating the weather event to the occurrence of crop losses, even in a scenario of scarce data. In addition, with the informative a priori use, it was possible to find an optimal trigger to relate the climatic event and the occurrence of losses and that brought a viable cost of commercialization for both agents involved. The use of the Bayesian inferential approach made it possible, through credibility intervals, for the uncertainty of the process to be quantified with reasonable precision in all stages of the modeling, providing a greater degree of basis for the contract managers to make decisions. It is concluded that the method proposed here proved to be promising and can be adapted for contracts of different cultures and climatic events. |
| publishDate |
2023 |
| dc.date.accessioned.fl_str_mv |
2023-08-23T19:17:13Z |
| dc.date.issued.fl_str_mv |
2023-06-29 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
BRANCO, Karoline Pereira. Inferência probabilística para seguro paramétrico. 2023. 81 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2023. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.unifal-mg.edu.br/handle/123456789/2297 |
| identifier_str_mv |
BRANCO, Karoline Pereira. Inferência probabilística para seguro paramétrico. 2023. 81 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2023. |
| url |
https://repositorio.unifal-mg.edu.br/handle/123456789/2297 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.department.fl_str_mv |
-8156311678363143599 |
| dc.relation.confidence.fl_str_mv |
600 600 600 |
| dc.relation.cnpq.fl_str_mv |
-2104850853990363200 |
| dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Estatística Aplicada e Biometria |
| dc.publisher.initials.fl_str_mv |
UNIFAL-MG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Ciências Exatas |
| publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL instname:Universidade Federal de Alfenas (UNIFAL) instacron:UNIFAL |
| instname_str |
Universidade Federal de Alfenas (UNIFAL) |
| instacron_str |
UNIFAL |
| institution |
UNIFAL |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| collection |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| bitstream.url.fl_str_mv |
https://repositorio.unifal-mg.edu.br/bitstreams/a272ce37-81fd-42b3-bfc2-6e2e8b6347c4/download https://repositorio.unifal-mg.edu.br/bitstreams/321edf27-700c-46d1-99ec-16f160ac6547/download https://repositorio.unifal-mg.edu.br/bitstreams/a91c7b1e-75af-4598-80af-c541367753b7/download https://repositorio.unifal-mg.edu.br/bitstreams/ba93a524-fa00-4bbb-8181-d747e63ed06f/download https://repositorio.unifal-mg.edu.br/bitstreams/6ad26e42-8eec-4265-944d-effe2f24bb55/download https://repositorio.unifal-mg.edu.br/bitstreams/a7772816-0a85-4d28-ba64-95c8597b2f26/download https://repositorio.unifal-mg.edu.br/bitstreams/beab76d9-1c24-4e3c-841d-d199a23807c2/download |
| bitstream.checksum.fl_str_mv |
31555718c4fc75849dd08f27935d4f6b 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 70dc5f04be9842f0e398a307603565c6 b1ca1b6d97165cc40a34c255bcf4e242 ae8f4b5a043179697217c8e2324432c3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL) |
| repository.mail.fl_str_mv |
bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br |
| _version_ |
1850508385456226304 |