Exportação concluída — 

Dynamic optimization of classification systems for adaptive incremental learning.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Kapp, Marcelo Nepomoceno
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://dspace.unila.edu.br/handle/123456789/550
https://www.etsmtl.ca/ETS/media/ImagesETS/Labo/LIVIA/Theses/MKapp_PhD_2010.pdf
Resumo: Tese de Doutorado, defendida na Université Du Québec, Canadian. 2010
id UNIL_c40eb0645c763933e97f4d268e62462b
oai_identifier_str oai:dspace.unila.edu.br:123456789/550
network_acronym_str UNIL
network_name_str Repositório Institucional da UNILA
repository_id_str
spelling Dynamic optimization of classification systems for adaptive incremental learning.Dynamic optimizationPós-Graduação Teses de DoutoradoTese de Doutorado, defendida na Université Du Québec, Canadian. 2010An incremental learning system updates itself in response to incoming data without reexamining all the old data. Since classification systems capable of incrementally storing, filtering, and classifying data are economical, in terms of both space and time, which makes them immensely useful for industrial, military, and commercial purposes, interest in designing them is growing. However, the challenge with incremental learning is that classification tasks can no longer be seen as unvarying, since they can actually change with the evolution of the data. These changes in turn cause dynamic changes to occur in the classification system’s parameters If such variations are neglected, the overall performance of these systems will be compromised in the future. In this thesis, on the development of a system capable of incrementally accommodating new data and dynamically tracking new optimum system parameters for self-adaptation, we first address the optimum selection of classifiers over time. We propose a framework which combines the power of Swarm Intelligence Theory and the conventional grid-search method to progressively identify potential solutions for gradually updating training datasets. The key here is to consider the adjustment of classifier parameters as a dynamic optimization problem that depends on the data available. Specifically, it has been shown that, if the intention is to build efficient Support Vector Machine (SVM) classifiers from sources that provide data gradually and serially, then the best way to do this is to consider model selection as a dynamic process which can evolve and change over time. This means that a number of solutions are required, depending on the knowledge available about the problem and uncertainties in the data. We also investigate measures for evaluating and selecting classifier ensembles composed of SVM classifiers. The measures employed are based on two different theories (diversity and margin) commonly used to understand the success of ensembles. This study has given us valuable insights and helped us to establish confidence-based measures as a tool for the selection of classifier ensembles. The main contribution of this thesis is a dynamic optimization approach that performs incremental learning in an adaptive fashion by tracking, evolving, and combining optimum hypotheses over time. The approach incorporates various theories, such as dynamic Particle Swarm Optimization, incremental Support Vector Machine classifiers, change detection, and dynamic ensemble selection based on classifier confidence levels. Experiments carried out on synthetic and real-world databases demonstrate that the proposed approach outperforms the classification methods often used in incremental learning scenarios.2016-05-25T23:32:22Z2016-05-25T23:32:22Z2016-05-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfKAPP, Marcelo Nepomoceno. Dynamic optimization of classification systems for adaptive incremental learning. 170p. Tese de Doutorado (Pós-Graduação em Ciência da Computação) – Université du Québec, Montreal, 2010.https://dspace.unila.edu.br/handle/123456789/550https://www.etsmtl.ca/ETS/media/ImagesETS/Labo/LIVIA/Theses/MKapp_PhD_2010.pdfengKapp, Marcelo Nepomocenoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNILAinstname:Universidade Federal da Integração Latino-Americana (UNILA)instacron:UNILA2024-05-07T04:29:21Zoai:dspace.unila.edu.br:123456789/550Repositório InstitucionalPUBhttp://dspace.unila.edu.br/oai/requestopendoar:36362024-05-07T04:29:21Repositório Institucional da UNILA - Universidade Federal da Integração Latino-Americana (UNILA)false
dc.title.none.fl_str_mv Dynamic optimization of classification systems for adaptive incremental learning.
title Dynamic optimization of classification systems for adaptive incremental learning.
spellingShingle Dynamic optimization of classification systems for adaptive incremental learning.
Kapp, Marcelo Nepomoceno
Dynamic optimization
Pós-Graduação Teses de Doutorado
title_short Dynamic optimization of classification systems for adaptive incremental learning.
title_full Dynamic optimization of classification systems for adaptive incremental learning.
title_fullStr Dynamic optimization of classification systems for adaptive incremental learning.
title_full_unstemmed Dynamic optimization of classification systems for adaptive incremental learning.
title_sort Dynamic optimization of classification systems for adaptive incremental learning.
author Kapp, Marcelo Nepomoceno
author_facet Kapp, Marcelo Nepomoceno
author_role author
dc.contributor.author.fl_str_mv Kapp, Marcelo Nepomoceno
dc.subject.por.fl_str_mv Dynamic optimization
Pós-Graduação Teses de Doutorado
topic Dynamic optimization
Pós-Graduação Teses de Doutorado
description Tese de Doutorado, defendida na Université Du Québec, Canadian. 2010
publishDate 2016
dc.date.none.fl_str_mv 2016-05-25T23:32:22Z
2016-05-25T23:32:22Z
2016-05-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv KAPP, Marcelo Nepomoceno. Dynamic optimization of classification systems for adaptive incremental learning. 170p. Tese de Doutorado (Pós-Graduação em Ciência da Computação) – Université du Québec, Montreal, 2010.
https://dspace.unila.edu.br/handle/123456789/550
https://www.etsmtl.ca/ETS/media/ImagesETS/Labo/LIVIA/Theses/MKapp_PhD_2010.pdf
identifier_str_mv KAPP, Marcelo Nepomoceno. Dynamic optimization of classification systems for adaptive incremental learning. 170p. Tese de Doutorado (Pós-Graduação em Ciência da Computação) – Université du Québec, Montreal, 2010.
url https://dspace.unila.edu.br/handle/123456789/550
https://www.etsmtl.ca/ETS/media/ImagesETS/Labo/LIVIA/Theses/MKapp_PhD_2010.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNILA
instname:Universidade Federal da Integração Latino-Americana (UNILA)
instacron:UNILA
instname_str Universidade Federal da Integração Latino-Americana (UNILA)
instacron_str UNILA
institution UNILA
reponame_str Repositório Institucional da UNILA
collection Repositório Institucional da UNILA
repository.name.fl_str_mv Repositório Institucional da UNILA - Universidade Federal da Integração Latino-Americana (UNILA)
repository.mail.fl_str_mv
_version_ 1824953276478521344