Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Estadual do Oeste do Paraná
Cascavel |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Agrícola
|
| Departamento: |
Centro de Ciências Exatas e Tecnológicas
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://tede.unioeste.br/handle/tede/3916 |
Resumo: | Knowledge of location and quantity of areas for agriculture or either native or planted forests is relevant for public managers to make their decisions based on reliable data. In addition, part of ICMS revenues from the Municipal Participation Fund (FPM) depends on agricultural production data, number of rural properties and the environmental factor. The objective of this research was to design an objective and semiautomatic methodology to map agricultural areas and targets permanent, and later to identify areas of soybean, corn 1st and 2nd crops, winter crops, semi-perennial agriculture, forests and other permanent targets in the state of Paraná for the harvest years (2013/14 to 2016/17), using temporal series of EVI/Modis vegetation indexes. The proposed methodology follows the steps of the Knowledge Discovery Process in Database – KDD, in which the classification task was performed by the Random Forest algorithm. For the validation of the mappings, samples extracted from Landsat-8 images were used, obtaining the global accuracy indices greater than 84.37% and a kappa index ranging from 0.63 to 0.98, hence considered mappings with good or excellent spatial accuracy. The municipal data of the area of soybean, corn 1st crop, corn 2nd crop and winter crops mapped were confronted with the official statistics obtaining coefficients of linear correlation between 0.61 to 0.9, indicating moderate or strong correlation with the data officials. In this way, the proposed semi-automatic methodology was successful in the mapping, as well as the automation of the process of elaboration of the metrics, thus generating a script in the software R in order to facilitate future mappings with low processing time. |
| id |
UNIOESTE-1_032fc341ccc6fa25e276abcc543e4433 |
|---|---|
| oai_identifier_str |
oai:tede.unioeste.br:tede/3916 |
| network_acronym_str |
UNIOESTE-1 |
| network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| repository_id_str |
|
| spelling |
Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Silva Junior, Carlos Antonio dahttp://lattes.cnpq.br/4249094513528309Mercante , Eriveltohttp://lattes.cnpq.br/4061800207647478Gurgacz, Fláviohttp://lattes.cnpq.br/5841903379711710http://lattes.cnpq.br/0953993470965050Verica, Weverton Rodrigo2018-09-06T19:38:50Z2018-02-16VERICA, Weverton Rodrigo. Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná. 2018. 116 f. Dissertação (Mestrado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.http://tede.unioeste.br/handle/tede/3916Knowledge of location and quantity of areas for agriculture or either native or planted forests is relevant for public managers to make their decisions based on reliable data. In addition, part of ICMS revenues from the Municipal Participation Fund (FPM) depends on agricultural production data, number of rural properties and the environmental factor. The objective of this research was to design an objective and semiautomatic methodology to map agricultural areas and targets permanent, and later to identify areas of soybean, corn 1st and 2nd crops, winter crops, semi-perennial agriculture, forests and other permanent targets in the state of Paraná for the harvest years (2013/14 to 2016/17), using temporal series of EVI/Modis vegetation indexes. The proposed methodology follows the steps of the Knowledge Discovery Process in Database – KDD, in which the classification task was performed by the Random Forest algorithm. For the validation of the mappings, samples extracted from Landsat-8 images were used, obtaining the global accuracy indices greater than 84.37% and a kappa index ranging from 0.63 to 0.98, hence considered mappings with good or excellent spatial accuracy. The municipal data of the area of soybean, corn 1st crop, corn 2nd crop and winter crops mapped were confronted with the official statistics obtaining coefficients of linear correlation between 0.61 to 0.9, indicating moderate or strong correlation with the data officials. In this way, the proposed semi-automatic methodology was successful in the mapping, as well as the automation of the process of elaboration of the metrics, thus generating a script in the software R in order to facilitate future mappings with low processing time.O conhecimento da localização e da quantidade de áreas destinadas a agricultura ou a florestas nativas ou plantadas é relevante para que os gestores públicos tomem suas decisões pautadas em dados fidedignos com a realidade. Além disto, parte das receitas de ICMS advindas do Fundo de Participação aos Municípios (FPM) depende de dados de produção agropecuária, número de propriedades rurais e fator ambiental. Diante disso, esta dissertação teve como objetivo elaborar uma metodologia objetiva e semiautomática para mapear áreas agrícolas e alvos permanente e posteriormente identificar áreas de soja, milho 1ª e 2ª safras, culturas de inverno, agricultura semi-perene, florestas e demais alvos permanentes no estado do Paraná para os anos-safra (2013/14 a 2016/17), utilizando séries temporais de índices de vegetação EVI/Modis. A metodologia proposta segue os passos do Processo de descoberta de conhecimento em base de dados – KDD, sendo que para isso foram elaboradas métricas extraídas do perfil espectro temporal de cada pixel e foi empregada a tarefa de classificação, realizada pelo algoritmo Random Forest. Para a validação dos mapeamentos utilizaram-se amostras extraídas de imagens Landsat-8, obtendo-se os índices de exatidão global maior que 84,37% e um índice kappa variando entre 0,63 e 0,98, sendo, portanto, considerados mapeamentos com boa ou excelente acurácia espacial. Os dados municipais da área de soja, milho 1ª safra, milho 2ª safra e culturas de inverno mapeada foram confrontados com as estatísticas oficiais obtendo-se coeficientes de correlação linear entre 0,61 a 0,9, indicando moderada ou forte correlação com os dados oficiais. Desse modo, a metodologia semiautomática proposta obteve êxito na realização do mapeamento, bem como a automatização do processo de elaboração das métricas, gerando, com isso um script no software R de maneira a facilitar mapeamentos futuros com baixo tempo de processamento.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2018-09-06T19:38:50Z No. of bitstreams: 2 Weverton_Verica2018.pdf: 4544186 bytes, checksum: 766200b4dea97433d3d88b08cbe3e548 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-09-06T19:38:50Z (GMT). No. of bitstreams: 2 Weverton_Verica2018.pdf: 4544186 bytes, checksum: 766200b4dea97433d3d88b08cbe3e548 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-16Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessKDDRandom ForestClassificaçãoKDDRandom forestClassificationCIENCIAS AGRARIAS::ENGENHARIA AGRICOLAMapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no ParanáSemiautomatic mapping of agricultural areas and targets permanent by profile spectrum-temporary of evi / modis in Paranainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5347692450416052129600600600600221437444286838201591854457215887615552075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALWeverton_Verica2018.pdfWeverton_Verica2018.pdfapplication/pdf4544186http://tede.unioeste.br:8080/tede/bitstream/tede/3916/5/Weverton_Verica2018.pdf766200b4dea97433d3d88b08cbe3e548MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/3916/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/3916/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/3916/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/3916/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/39162018-09-06 16:38:50.839oai:tede.unioeste.br:tede/3916Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2018-09-06T19:38:50Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
| dc.title.por.fl_str_mv |
Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná |
| dc.title.alternative.eng.fl_str_mv |
Semiautomatic mapping of agricultural areas and targets permanent by profile spectrum-temporary of evi / modis in Parana |
| title |
Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná |
| spellingShingle |
Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná Verica, Weverton Rodrigo KDD Random Forest Classificação KDD Random forest Classification CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
| title_short |
Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná |
| title_full |
Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná |
| title_fullStr |
Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná |
| title_full_unstemmed |
Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná |
| title_sort |
Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná |
| author |
Verica, Weverton Rodrigo |
| author_facet |
Verica, Weverton Rodrigo |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Johann, Jerry Adriani |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
| dc.contributor.referee1.fl_str_mv |
Johann, Jerry Adriani |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
| dc.contributor.referee2.fl_str_mv |
Silva Junior, Carlos Antonio da |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/4249094513528309 |
| dc.contributor.referee3.fl_str_mv |
Mercante , Erivelto |
| dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/4061800207647478 |
| dc.contributor.referee4.fl_str_mv |
Gurgacz, Flávio |
| dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/5841903379711710 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0953993470965050 |
| dc.contributor.author.fl_str_mv |
Verica, Weverton Rodrigo |
| contributor_str_mv |
Johann, Jerry Adriani Johann, Jerry Adriani Silva Junior, Carlos Antonio da Mercante , Erivelto Gurgacz, Flávio |
| dc.subject.por.fl_str_mv |
KDD Random Forest Classificação |
| topic |
KDD Random Forest Classificação KDD Random forest Classification CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
| dc.subject.eng.fl_str_mv |
KDD Random forest Classification |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
| description |
Knowledge of location and quantity of areas for agriculture or either native or planted forests is relevant for public managers to make their decisions based on reliable data. In addition, part of ICMS revenues from the Municipal Participation Fund (FPM) depends on agricultural production data, number of rural properties and the environmental factor. The objective of this research was to design an objective and semiautomatic methodology to map agricultural areas and targets permanent, and later to identify areas of soybean, corn 1st and 2nd crops, winter crops, semi-perennial agriculture, forests and other permanent targets in the state of Paraná for the harvest years (2013/14 to 2016/17), using temporal series of EVI/Modis vegetation indexes. The proposed methodology follows the steps of the Knowledge Discovery Process in Database – KDD, in which the classification task was performed by the Random Forest algorithm. For the validation of the mappings, samples extracted from Landsat-8 images were used, obtaining the global accuracy indices greater than 84.37% and a kappa index ranging from 0.63 to 0.98, hence considered mappings with good or excellent spatial accuracy. The municipal data of the area of soybean, corn 1st crop, corn 2nd crop and winter crops mapped were confronted with the official statistics obtaining coefficients of linear correlation between 0.61 to 0.9, indicating moderate or strong correlation with the data officials. In this way, the proposed semi-automatic methodology was successful in the mapping, as well as the automation of the process of elaboration of the metrics, thus generating a script in the software R in order to facilitate future mappings with low processing time. |
| publishDate |
2018 |
| dc.date.accessioned.fl_str_mv |
2018-09-06T19:38:50Z |
| dc.date.issued.fl_str_mv |
2018-02-16 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
VERICA, Weverton Rodrigo. Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná. 2018. 116 f. Dissertação (Mestrado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018. |
| dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br/handle/tede/3916 |
| identifier_str_mv |
VERICA, Weverton Rodrigo. Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná. 2018. 116 f. Dissertação (Mestrado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018. |
| url |
http://tede.unioeste.br/handle/tede/3916 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
-5347692450416052129 |
| dc.relation.confidence.fl_str_mv |
600 600 600 600 |
| dc.relation.department.fl_str_mv |
2214374442868382015 |
| dc.relation.cnpq.fl_str_mv |
9185445721588761555 |
| dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
| dc.publisher.initials.fl_str_mv |
UNIOESTE |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
| publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
| instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
| instacron_str |
UNIOESTE |
| institution |
UNIOESTE |
| reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
| bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/3916/5/Weverton_Verica2018.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/3916/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/3916/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/3916/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/3916/1/license.txt |
| bitstream.checksum.fl_str_mv |
766200b4dea97433d3d88b08cbe3e548 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
| repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
| _version_ |
1851949191924809728 |