Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Figueiredo, Ernanny lattes
Orientador(a): Miloca, Simone Aparecida lattes
Banca de defesa: Miloca, Simone Aparecida lattes, Villwock, Rosangela lattes, Ito, Giani Carla lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Paraná
Cascavel
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: Centro de Ciências Exatas e Tecnológicas
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.unioeste.br/handle/tede/5924
Resumo: Every day, millions of people openly share their opinions on social media and comment sites about specific topics, products, services, etc. Several segments of the business market are interested in gaining information from this medium that is relevant to their business. One type of desired information is the identification of sentiments expressed by registered users in the form of opinions, as this shows agreement or disagreement related to the topic. Manual collection of such information is often not feasible due to the large amount of text. This is where machine learning techniques come into play, allowing you to organize, manage and extract knowledge so that the user of the solution can improve their business strategy. This work proposes an approach to the text classification problem applied to sentiment analysis to identify the polarity of the text, i.e., to know whether the opinion is positive or negative. The literature indicates several tools with different classifiers can be found in the ones used in this work are those whose built models incorporate classifiers based on artificial neural networks. The models were created and their performance was evaluated for a specific set of data containing the opinions of consumers who purchased health care products, with texts written in Portuguese. The effect of the preprocessing stages of the texts on the models was also studied. The results showed that artificial neural network solutions, both multilayer and recurrent, implemented in Python, reach an efficiency level close to the best and most widespread commercial tools for this task.
id UNIOESTE-1_06cd00c6f439331ae2d41300706fb772
oai_identifier_str oai:tede.unioeste.br:tede/5924
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Miloca, Simone Aparecidahttp://lattes.cnpq.br/4694429479318132Miloca, Simone Aparecidahttp://lattes.cnpq.br/4694429479318132Villwock, Rosangelahttp://lattes.cnpq.br/2576133417405952Ito, Giani Carlahttp://lattes.cnpq.br/4727340593582933http://lattes.cnpq.br/8368293416504966Figueiredo, Ernanny2022-03-24T11:29:25Z2022-02-04FIGUEIREDO, Ernanny. Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais. 2022. 72 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.https://tede.unioeste.br/handle/tede/5924Every day, millions of people openly share their opinions on social media and comment sites about specific topics, products, services, etc. Several segments of the business market are interested in gaining information from this medium that is relevant to their business. One type of desired information is the identification of sentiments expressed by registered users in the form of opinions, as this shows agreement or disagreement related to the topic. Manual collection of such information is often not feasible due to the large amount of text. This is where machine learning techniques come into play, allowing you to organize, manage and extract knowledge so that the user of the solution can improve their business strategy. This work proposes an approach to the text classification problem applied to sentiment analysis to identify the polarity of the text, i.e., to know whether the opinion is positive or negative. The literature indicates several tools with different classifiers can be found in the ones used in this work are those whose built models incorporate classifiers based on artificial neural networks. The models were created and their performance was evaluated for a specific set of data containing the opinions of consumers who purchased health care products, with texts written in Portuguese. The effect of the preprocessing stages of the texts on the models was also studied. The results showed that artificial neural network solutions, both multilayer and recurrent, implemented in Python, reach an efficiency level close to the best and most widespread commercial tools for this task.Todos os dias, milhões de pessoas compartilham abertamente, nas redes sociais e páginas de comentários, suas opiniões sobre determinados assuntos, produtos, serviços, etc. Diversos segmentos do mercado empresarial têm interesse em extrair informações desse meio, que sejam relevantes para seu negócio. Um tipo de informação desejada é a identificação de sentimentos expressos pelos usuários registrados na forma de opiniões, já que isso demonstra a aceitação ou rejeição com relação ao assunto. A obtenção de tais informações de forma manual muitas vezes é inviável devido a grande quantidade de textos e ai entram as técnicas de aprendizado de máquina permitindo organizar, gerenciar e extrair conhecimento, possibilitando ao utilizador da solução melhorar sua estratégia de negócio. Este trabalho propõe uma abordagem para o problema de classificação de textos aplicado à análise de sentimentos, para identificar a polaridade do texto, ou seja, saber se a opinião é positiva ou negativa. A literatura indica diversas ferramentas com classificadores diferentes, sendo as utilizadas neste trabalho aquelas cujos modelos construídos incorporam classificadores baseados em redes neurais artificiais. Modelos foram construídos e seu desempenho avaliado para um grupo particular de dados que contém opiniões de consumidores que adquiriram produtos da área da saúde, com textos escritos na língua portuguesa. Também investigou-se o impacto das fases de pré-processamento do texto nos modelos. Os resultados mostraram que as soluções de redes neurais artificiais, tanto as multi camadas quanto as recorrentes, implementadas em Python, atingem um nível de eficiência próximo das melhores e mais difundidas ferramentas comerciais destinadas à esta tarefa.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2022-03-24T11:29:25Z No. of bitstreams: 2 Ernanny_Figueiredo2022.pdf: 2434307 bytes, checksum: 7cb7c50c9a085f979de1f7d8d6c48782 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2022-03-24T11:29:25Z (GMT). No. of bitstreams: 2 Ernanny_Figueiredo2022.pdf: 2434307 bytes, checksum: 7cb7c50c9a085f979de1f7d8d6c48782 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2022-02-04application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Ciência da ComputaçãoUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessClassificação de textosRedes neuraisAprendizagem de máquinaText classificationNeural networksMachine learningCiência da ComputaçãoClassificação de sentimentos em textos de e-commerce utilizando redes neurais artificiaisClassification of sentiments in e-commerce utilizando redes neurais artificiaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis2214374442868382015600reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALErnanny_Figueiredo2022.pdfErnanny_Figueiredo2022.pdfapplication/pdf2434307http://tede.unioeste.br:8080/tede/bitstream/tede/5924/5/Ernanny_Figueiredo2022.pdf7cb7c50c9a085f979de1f7d8d6c48782MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/5924/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5924/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5924/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/5924/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/59242023-09-19 10:16:08.901oai:tede.unioeste.br:tede/5924Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2023-09-19T13:16:08Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais
dc.title.alternative.eng.fl_str_mv Classification of sentiments in e-commerce utilizando redes neurais artificiais
title Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais
spellingShingle Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais
Figueiredo, Ernanny
Classificação de textos
Redes neurais
Aprendizagem de máquina
Text classification
Neural networks
Machine learning
Ciência da Computação
title_short Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais
title_full Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais
title_fullStr Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais
title_full_unstemmed Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais
title_sort Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais
author Figueiredo, Ernanny
author_facet Figueiredo, Ernanny
author_role author
dc.contributor.advisor1.fl_str_mv Miloca, Simone Aparecida
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4694429479318132
dc.contributor.referee1.fl_str_mv Miloca, Simone Aparecida
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/4694429479318132
dc.contributor.referee2.fl_str_mv Villwock, Rosangela
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2576133417405952
dc.contributor.referee3.fl_str_mv Ito, Giani Carla
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4727340593582933
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8368293416504966
dc.contributor.author.fl_str_mv Figueiredo, Ernanny
contributor_str_mv Miloca, Simone Aparecida
Miloca, Simone Aparecida
Villwock, Rosangela
Ito, Giani Carla
dc.subject.por.fl_str_mv Classificação de textos
Redes neurais
Aprendizagem de máquina
topic Classificação de textos
Redes neurais
Aprendizagem de máquina
Text classification
Neural networks
Machine learning
Ciência da Computação
dc.subject.eng.fl_str_mv Text classification
Neural networks
Machine learning
dc.subject.cnpq.fl_str_mv Ciência da Computação
description Every day, millions of people openly share their opinions on social media and comment sites about specific topics, products, services, etc. Several segments of the business market are interested in gaining information from this medium that is relevant to their business. One type of desired information is the identification of sentiments expressed by registered users in the form of opinions, as this shows agreement or disagreement related to the topic. Manual collection of such information is often not feasible due to the large amount of text. This is where machine learning techniques come into play, allowing you to organize, manage and extract knowledge so that the user of the solution can improve their business strategy. This work proposes an approach to the text classification problem applied to sentiment analysis to identify the polarity of the text, i.e., to know whether the opinion is positive or negative. The literature indicates several tools with different classifiers can be found in the ones used in this work are those whose built models incorporate classifiers based on artificial neural networks. The models were created and their performance was evaluated for a specific set of data containing the opinions of consumers who purchased health care products, with texts written in Portuguese. The effect of the preprocessing stages of the texts on the models was also studied. The results showed that artificial neural network solutions, both multilayer and recurrent, implemented in Python, reach an efficiency level close to the best and most widespread commercial tools for this task.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-03-24T11:29:25Z
dc.date.issued.fl_str_mv 2022-02-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FIGUEIREDO, Ernanny. Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais. 2022. 72 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/5924
identifier_str_mv FIGUEIREDO, Ernanny. Classificação de sentimentos em textos de e-commerce utilizando redes neurais artificiais. 2022. 72 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.
url https://tede.unioeste.br/handle/tede/5924
dc.language.iso.fl_str_mv por
language por
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/5924/5/Ernanny_Figueiredo2022.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/5924/2/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/5924/3/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/5924/4/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/5924/1/license.txt
bitstream.checksum.fl_str_mv 7cb7c50c9a085f979de1f7d8d6c48782
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1851949221201051648