Detecção de intrusão aplicando random forests em ambiente federated learning

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Costa, Marcio Fernandes da lattes
Orientador(a): Machado, Renato Bobsin lattes
Banca de defesa: Maciel, Joylan Nunes lattes, Zalewski, Willian lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Paraná
Foz do Iguaçu
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Computação
Departamento: Centro de Engenharias e Ciências Exatas
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.unioeste.br/handle/tede/8042
Resumo: The growing expansion of Internet of Things devices has transformed several sectors, driving gains in efficiency and automation. However, this evolution also increases vulnerability to cyber attacks, generating financial risks and damage to reputation. Given this scenario of growing concern about security, effective intrusion detection methods become indispensable. Federated learning emerges as a promising approach to address this challenge, as it enables the training of global models without compromising data privacy. Based on this perspective, this work proposes an intrusion detection method that uses random forests as a classification model, applied to the IoTID20 dataset in a federated environment. The choice of random forests is justified by their robustness in pattern classification, making them suitable for cybersecurity scenarios. To optimize the model’s performance, pre-processing steps were performed on the dataset, providing greater efficiency in training. To mitigate data imbalance, the oversampling technique was applied, contributing to improved results. Additionally, the use of an ensemble for attribute selection allowed the creation of several datasets, enabling the evaluation of model performance in different scenarios. The experiments demonstrated that the federated model performed better than the centralized model, even in the absence of hyperparameter optimization in both models. The federated model achieved average accuracy of 98.51%, F1-score of 98.60%, and Recall of 98.43%, while the centralized model achieved 97.49% accuracy, 97.61% F1-score, and 96.67% Recall, positioning these results competitively in relation to other works in the literature that address intrusion detection in federated environments.
id UNIOESTE-1_51de73fd62550cdecd7e9d8f882e0e38
oai_identifier_str oai:tede.unioeste.br:tede/8042
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Machado, Renato Bobsinhttp://lattes.cnpq.br/8407723021436270Maciel, Joylan Nuneshttp://lattes.cnpq.br/1177414528561833Zalewski, Willianhttp://lattes.cnpq.br/3425550580618899http://lattes.cnpq.br/7885456194093243Costa, Marcio Fernandes da2025-08-26T14:30:29Z2025-07-17Costa, Marcio Fernandes da. Detecção de intrusão aplicando random forests em ambiente federated learning. 2025. 138 f. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu, 2025.https://tede.unioeste.br/handle/tede/8042The growing expansion of Internet of Things devices has transformed several sectors, driving gains in efficiency and automation. However, this evolution also increases vulnerability to cyber attacks, generating financial risks and damage to reputation. Given this scenario of growing concern about security, effective intrusion detection methods become indispensable. Federated learning emerges as a promising approach to address this challenge, as it enables the training of global models without compromising data privacy. Based on this perspective, this work proposes an intrusion detection method that uses random forests as a classification model, applied to the IoTID20 dataset in a federated environment. The choice of random forests is justified by their robustness in pattern classification, making them suitable for cybersecurity scenarios. To optimize the model’s performance, pre-processing steps were performed on the dataset, providing greater efficiency in training. To mitigate data imbalance, the oversampling technique was applied, contributing to improved results. Additionally, the use of an ensemble for attribute selection allowed the creation of several datasets, enabling the evaluation of model performance in different scenarios. The experiments demonstrated that the federated model performed better than the centralized model, even in the absence of hyperparameter optimization in both models. The federated model achieved average accuracy of 98.51%, F1-score of 98.60%, and Recall of 98.43%, while the centralized model achieved 97.49% accuracy, 97.61% F1-score, and 96.67% Recall, positioning these results competitively in relation to other works in the literature that address intrusion detection in federated environments.A crescente expansão dos dispositivos da Internet das Coisas tem transformado diversos setores, impulsionando ganhos em eficiência e automação. No entanto, essa evolução também amplia a vulnerabilidade a ataques cibernéticos, gerando riscos financeiros e danos à reputação. Diante desse cenário de crescente preocupação com a segurança, métodos eficazes de detecção de intrusões tornam-se indispensáveis. O aprendizado federado surge como uma abordagem promissora para enfrentar esse desafio, pois possibilita o treinamento de modelos globais sem comprometer a privacidade dos dados. Com base nessa perspectiva, este trabalho propõe um método de detecção de intrusão que utiliza florestas aleatórias como modelo de classificação, aplicado ao conjunto de dados IoTID20 em um ambiente federado. A escolha das florestas aleatórias justifica-se por sua robustez na classificação de padrões, tornando-as adequadas para cenários de segurança cibernética. Para otimizar o desempenho do modelo, foram realizadas etapas de pré-processamento no conjunto de dados, proporcionando maior eficiência no treinamento. Para mitigar o desbalanceamento dos dados, aplicou-se a técnica de oversampling, contribuindo para a melhoria dos resultados e, adicionalmente, a utilização de um ensemble para a seleção dos atributos permitiu a criação de vários conjuntos de dados, possibilitando a avaliação do desempenho do modelo em diferentes cenários. Os experimentos demonstraram que o modelo federado apresentou desempenho superior em relação ao modelo centralizado, mesmo na ausência da otimização de hiperparâmetros em ambos modelos. O modelo federado obteve médias de acurácia de 98,51%, F1-score de 98,60% e Recall de 98,43%, enquanto o modelo centralizado alcançou 97,49% de acurácia, 97,61% de F1-score e 96,67% de Recall, posicionando estes resultados de forma competitiva em relação a outros trabalhos na literatura que abordam a detecção de intrusão em ambientes federados.Submitted by Katia Abreu (katia.abreu@unioeste.br) on 2025-08-26T14:30:29Z No. of bitstreams: 1 Marcio_Fernandes_da_Costa_2025.pdf: 3106570 bytes, checksum: 2345ba11a89161bc07a196c3ebe3d04c (MD5)Made available in DSpace on 2025-08-26T14:30:29Z (GMT). No. of bitstreams: 1 Marcio_Fernandes_da_Costa_2025.pdf: 3106570 bytes, checksum: 2345ba11a89161bc07a196c3ebe3d04c (MD5) Previous issue date: 2025-07-17application/pdfpor8774263440366006536500Universidade Estadual do Oeste do ParanáFoz do IguaçuPrograma de Pós-Graduação em Engenharia Elétrica e ComputaçãoUNIOESTEBrasilCentro de Engenharias e Ciências Exatashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAprendizado federadoDispositivos iotDetecção de IntrusãoFlorestas aleatóriasFederated learningIoT devicesIntrusion detectionRandom forestsCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAODetecção de intrusão aplicando random forests em ambiente federated learningIntrusion detection using random forests in federated learning environmentinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1040084669565072649600600600-77344021240821469228930092515683771531reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALMarcio_Fernandes_da_Costa_2025.pdfMarcio_Fernandes_da_Costa_2025.pdfapplication/pdf3106570http://tede.unioeste.br:8080/tede/bitstream/tede/8042/2/Marcio_Fernandes_da_Costa_2025.pdf2345ba11a89161bc07a196c3ebe3d04cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/8042/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/80422025-08-26 11:30:29.928oai:tede.unioeste.br:tede/8042Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2025-08-26T14:30:29Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Detecção de intrusão aplicando random forests em ambiente federated learning
dc.title.alternative.eng.fl_str_mv Intrusion detection using random forests in federated learning environment
title Detecção de intrusão aplicando random forests em ambiente federated learning
spellingShingle Detecção de intrusão aplicando random forests em ambiente federated learning
Costa, Marcio Fernandes da
Aprendizado federado
Dispositivos iot
Detecção de Intrusão
Florestas aleatórias
Federated learning
IoT devices
Intrusion detection
Random forests
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Detecção de intrusão aplicando random forests em ambiente federated learning
title_full Detecção de intrusão aplicando random forests em ambiente federated learning
title_fullStr Detecção de intrusão aplicando random forests em ambiente federated learning
title_full_unstemmed Detecção de intrusão aplicando random forests em ambiente federated learning
title_sort Detecção de intrusão aplicando random forests em ambiente federated learning
author Costa, Marcio Fernandes da
author_facet Costa, Marcio Fernandes da
author_role author
dc.contributor.advisor1.fl_str_mv Machado, Renato Bobsin
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8407723021436270
dc.contributor.referee1.fl_str_mv Maciel, Joylan Nunes
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1177414528561833
dc.contributor.referee2.fl_str_mv Zalewski, Willian
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3425550580618899
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7885456194093243
dc.contributor.author.fl_str_mv Costa, Marcio Fernandes da
contributor_str_mv Machado, Renato Bobsin
Maciel, Joylan Nunes
Zalewski, Willian
dc.subject.por.fl_str_mv Aprendizado federado
Dispositivos iot
Detecção de Intrusão
Florestas aleatórias
topic Aprendizado federado
Dispositivos iot
Detecção de Intrusão
Florestas aleatórias
Federated learning
IoT devices
Intrusion detection
Random forests
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv Federated learning
IoT devices
Intrusion detection
Random forests
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description The growing expansion of Internet of Things devices has transformed several sectors, driving gains in efficiency and automation. However, this evolution also increases vulnerability to cyber attacks, generating financial risks and damage to reputation. Given this scenario of growing concern about security, effective intrusion detection methods become indispensable. Federated learning emerges as a promising approach to address this challenge, as it enables the training of global models without compromising data privacy. Based on this perspective, this work proposes an intrusion detection method that uses random forests as a classification model, applied to the IoTID20 dataset in a federated environment. The choice of random forests is justified by their robustness in pattern classification, making them suitable for cybersecurity scenarios. To optimize the model’s performance, pre-processing steps were performed on the dataset, providing greater efficiency in training. To mitigate data imbalance, the oversampling technique was applied, contributing to improved results. Additionally, the use of an ensemble for attribute selection allowed the creation of several datasets, enabling the evaluation of model performance in different scenarios. The experiments demonstrated that the federated model performed better than the centralized model, even in the absence of hyperparameter optimization in both models. The federated model achieved average accuracy of 98.51%, F1-score of 98.60%, and Recall of 98.43%, while the centralized model achieved 97.49% accuracy, 97.61% F1-score, and 96.67% Recall, positioning these results competitively in relation to other works in the literature that address intrusion detection in federated environments.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-08-26T14:30:29Z
dc.date.issued.fl_str_mv 2025-07-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Costa, Marcio Fernandes da. Detecção de intrusão aplicando random forests em ambiente federated learning. 2025. 138 f. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu, 2025.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/8042
identifier_str_mv Costa, Marcio Fernandes da. Detecção de intrusão aplicando random forests em ambiente federated learning. 2025. 138 f. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu, 2025.
url https://tede.unioeste.br/handle/tede/8042
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -1040084669565072649
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -7734402124082146922
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Foz do Iguaçu
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica e Computação
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Engenharias e Ciências Exatas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Foz do Iguaçu
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/8042/2/Marcio_Fernandes_da_Costa_2025.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/8042/1/license.txt
bitstream.checksum.fl_str_mv 2345ba11a89161bc07a196c3ebe3d04c
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1851949250385018880