Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Grzegozewski, Denise Maria lattes
Orientador(a): Opazo, Miguel Angel Uribe lattes
Banca de defesa: Borssoi, Joelmir André lattes, Assumpção, Rosangela Aparecida Botinha lattes, Guedes, Luciana Pagliosa Carvalho lattes, Souza, Eduardo Godoy de lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Parana
Programa de Pós-Graduação: Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agrícola
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede.unioeste.br:8080/tede/handle/tede/2718
Resumo: Estimates of agricultural production are greatly important especially in economy field. However, they depend on area knowledge and cropping yield. Thus, this study aimed to propose a methodology to estimate the areas cropped with soybeans and corn in Paraná State according to multi-temporal EVI/MODIS vegetation index images for 2010/2011, 2011/2012 and 2012/2013 crop years. In addition, there was a research with spatial autocorrelation soybean yield in Paraná, with EVI vegetation index and meteorological variables in a decennial scale and estimate yield using CAR, SAR and GWR models. In Paraná State, there is a drawback to map soybeans crop since corn sowing period is very close to the first one. Therefore, images from the maximum and minimum vegetative vigour were drawn of each studied crop for mapping soybean and corn crops in order to obtain both cropping areas. Although, for the separation, Spectro Angle Mapper algorithm (SAM) was applied by one of the studied crops, while mapping was obtained by multiplying the other bands. Thus, for spatial statistics application of mapped data, the average EV profile of each municipality was extracted as well as for each multi-temporal image, in order to change them into a decennial scale. According to the spatial statistics of such areas, the descriptive analysis of univariate spatial autocorrelation (global and local) of each ten-day variable was used based on the soybean cycle. A bivariate autocorrelation analysis between soybean yield and the studied varieties were also performed. Finalizing the methodology, variables with the highest significant level by stepwise method were selected and SAR, CAR and GWR models were generated to estimate soybean yield. As results, regarding mappings, the following answers for soybean were found out: r = 0.95 and r = 0.99, and while for corn, the answers were: r = 0.72 and r = 0.95 for 2012/2013 and 2013/2014 crop years in relation to the official data from SEAB. So, it has been proved some great efficiency of this methodology to separate and identify crops. When the descriptive statistics of municipalities for each variable was carried out, it was found out that some regions began an early sowing in relation to other ones in Paraná by the decennial vegetation index. The ten-day scale was also possible to be identified according to the climatic factors that caused soybean yield damage. Based on the analysis of spatial autocorrelation, the greatest similarities occurred in 2011/2012 crop year, the one affected by the weather change, whose yields were similar in the municipalities of Paraná State. For spatial modelling, it was observed that selection of decennial variables was different for each studied crop year, and the best model selected by the validation. And GWR was chosen as the best model by the AIC, BIC and adjusted R² validation criteria. The residuals were randomly distributed throughout all the State, so that spatial autocorrelation could be eliminated.
id UNIOESTE-1_fd3526f55cd50ddc848969b89c5914f5
oai_identifier_str oai:tede.unioeste.br:tede/2718
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Opazo, Miguel Angel Uribehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4746318E8Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Borssoi, Joelmir Andréhttp://lattes.cnpq.br/6054221596474652Assumpção, Rosangela Aparecida Botinhahttp://lattes.cnpq.br/5532192685456247Guedes, Luciana Pagliosa Carvalhohttp://lattes.cnpq.br/3195220544719864Souza, Eduardo Godoy dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721691H5http://lattes.cnpq.br/8302784025687552Grzegozewski, Denise Maria2017-07-10T19:24:17Z2016-07-202016-02-03GRZEGOZEWSKI, Denise Maria. Mapping and spatial modeling for estimating the yields of agricultural crops with satellite images time series.. 2016. 156 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016.http://tede.unioeste.br:8080/tede/handle/tede/2718Estimates of agricultural production are greatly important especially in economy field. However, they depend on area knowledge and cropping yield. Thus, this study aimed to propose a methodology to estimate the areas cropped with soybeans and corn in Paraná State according to multi-temporal EVI/MODIS vegetation index images for 2010/2011, 2011/2012 and 2012/2013 crop years. In addition, there was a research with spatial autocorrelation soybean yield in Paraná, with EVI vegetation index and meteorological variables in a decennial scale and estimate yield using CAR, SAR and GWR models. In Paraná State, there is a drawback to map soybeans crop since corn sowing period is very close to the first one. Therefore, images from the maximum and minimum vegetative vigour were drawn of each studied crop for mapping soybean and corn crops in order to obtain both cropping areas. Although, for the separation, Spectro Angle Mapper algorithm (SAM) was applied by one of the studied crops, while mapping was obtained by multiplying the other bands. Thus, for spatial statistics application of mapped data, the average EV profile of each municipality was extracted as well as for each multi-temporal image, in order to change them into a decennial scale. According to the spatial statistics of such areas, the descriptive analysis of univariate spatial autocorrelation (global and local) of each ten-day variable was used based on the soybean cycle. A bivariate autocorrelation analysis between soybean yield and the studied varieties were also performed. Finalizing the methodology, variables with the highest significant level by stepwise method were selected and SAR, CAR and GWR models were generated to estimate soybean yield. As results, regarding mappings, the following answers for soybean were found out: r = 0.95 and r = 0.99, and while for corn, the answers were: r = 0.72 and r = 0.95 for 2012/2013 and 2013/2014 crop years in relation to the official data from SEAB. So, it has been proved some great efficiency of this methodology to separate and identify crops. When the descriptive statistics of municipalities for each variable was carried out, it was found out that some regions began an early sowing in relation to other ones in Paraná by the decennial vegetation index. The ten-day scale was also possible to be identified according to the climatic factors that caused soybean yield damage. Based on the analysis of spatial autocorrelation, the greatest similarities occurred in 2011/2012 crop year, the one affected by the weather change, whose yields were similar in the municipalities of Paraná State. For spatial modelling, it was observed that selection of decennial variables was different for each studied crop year, and the best model selected by the validation. And GWR was chosen as the best model by the AIC, BIC and adjusted R² validation criteria. The residuals were randomly distributed throughout all the State, so that spatial autocorrelation could be eliminated.As estimativas das produções agrícolas têm grande importância, principalmente, no âmbito econômico. No entanto, elas são dependentes do conhecimento da área de cultivo e da produtividade da cultura. Desta forma, este trabalho teve por objetivo propor uma metodologia para estimar as áreas cultivadas com soja e milho em escala municipal no Estado do Paraná a partir de imagens multi-temporais do índice de vegetação EVI/MODIS, para os anos-safras 2010/2011, 2011/2012 e 2012/2013. Além disto, trabalhar com a autocorrelação espacial da produtividade da soja nesse Estado, com o índice de vegetação EVI e variáveis agrometeorológicas em escala decendial bem como estimar a produtividade a partir dos modelos CAR, SAR e GWR. No Paraná, há o inconveniente para mapear a soja devido à proximidade de datas de semeadura do milho. Assim, para o mapeamento da soja e do milho, utilizaram-se imagens englobando o período de máximo e mínimo vigor vegetativo de cada cultura, para se obter a área cultivada das duas. Para a separação, utilizou-se o algoritmo Spectro Angle Mapper (SAM) para uma das culturas e obteve-se o mapeamento da outra pela multiplicação de bandas. Para aplicação da estatística espacial dos dados mapeados, extraiu-se o perfil médio do EVI de cada município e para cada imagem multi-temporal para transformá-los em escala decendial. De acordo com a estatística espacial de áreas, utilizou-se a análise descritiva, de autocorrelação espacial univariada (global e local) de cada variável decendial com foco no ciclo da soja. Também realizou-se a análise de autocorrelação bivariada entre a produtividade da soja com as variáveis em estudo. Finalizando a metodologia, selecionaram-se as variáveis com maior índice de significância pelo método de stepwise e, em seguida, foram gerados os modelos estimados (SAR, CAR e GWR) da produtividade da soja. Como resultados, foram encontradas as seguintes respostas para os mapeamentos da soja r= 0,95 e 0,99, e para o milho de r = 0,72 e r= 0,95 para os anos-safras 2012/2013 e 2013/2014 em relação aos dados oficiais da SEAB. Logo, comprovou-se a grande eficiência da metodologia para separação e identificação das culturas. Quando realizada a estatística descritiva dos municípios para cada variável, verificaram-se regiões que iniciam as semeaduras antecipadas em relação a outras regiões do Estado pelos decêndios do índice de vegetação. Foi também possível identificar os decêndios em que os fatores climáticos causaram danos à produtividade da soja. Na análise da autocorrelação espacial, as maiores similaridades ocorreram no ano-safra 2011/2012, ano afetado pela variação climática, cujas produtividades foram semelhantes nos municípios do Paraná. Para a modelagem espacial, verificou-se que a seleção das variáveis decêndiais foi diferente para cada ano-safra estudado, e o GWR foi escolhido como melhor modelo pelos critérios de validação, AIC, BIC e R² ajustado. Foram encontrados resíduos distribuídos aleatoriamente por todo o Estado, para que assim se eliminasse a autocorrelação espacialMade available in DSpace on 2017-07-10T19:24:17Z (GMT). No. of bitstreams: 1 DENISE_M_GR_ZEGOZEWSKI.pdf: 8188144 bytes, checksum: 045f54782a1ea2161edf5aa7046a8c1c (MD5) Previous issue date: 2016-02-03application/pdfporUniversidade Estadual do Oeste do ParanaPrograma de Pós-Graduação "Stricto Sensu" em Engenharia AgrícolaUNIOESTEBREngenhariahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAutocorrelação espacialDados agrometeorológicos decêndiaisEVI/MODISMultiplicação de bandasDecennial agro-meteorological dataEVI/MODISMultiplication bandsSpatial autocorrelation.CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAMapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélitesMapping and spatial modeling for estimating the yields of agricultural crops with satellite images time series.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALDENISE_M_GR_ZEGOZEWSKI.pdfapplication/pdf8188144http://tede.unioeste.br:8080/tede/bitstream/tede/2718/1/DENISE_M_GR_ZEGOZEWSKI.pdf045f54782a1ea2161edf5aa7046a8c1cMD51tede/27182017-07-11 10:06:46.405oai:tede.unioeste.br:tede/2718Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2017-07-11T13:06:46Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites
dc.title.alternative.eng.fl_str_mv Mapping and spatial modeling for estimating the yields of agricultural crops with satellite images time series.
title Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites
spellingShingle Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites
Grzegozewski, Denise Maria
Autocorrelação espacial
Dados agrometeorológicos decêndiais
EVI/MODIS
Multiplicação de bandas
Decennial agro-meteorological data
EVI/MODIS
Multiplication bands
Spatial autocorrelation.
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites
title_full Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites
title_fullStr Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites
title_full_unstemmed Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites
title_sort Mapeamento e modelagem espacial para estimativa de safras de culturas agrícolas com séries temporais de imagens de satélites
author Grzegozewski, Denise Maria
author_facet Grzegozewski, Denise Maria
author_role author
dc.contributor.advisor1.fl_str_mv Opazo, Miguel Angel Uribe
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4746318E8
dc.contributor.advisor-co1.fl_str_mv Johann, Jerry Adriani
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.referee1.fl_str_mv Borssoi, Joelmir André
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6054221596474652
dc.contributor.referee2.fl_str_mv Assumpção, Rosangela Aparecida Botinha
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5532192685456247
dc.contributor.referee3.fl_str_mv Guedes, Luciana Pagliosa Carvalho
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3195220544719864
dc.contributor.referee4.fl_str_mv Souza, Eduardo Godoy de
dc.contributor.referee4Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721691H5
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8302784025687552
dc.contributor.author.fl_str_mv Grzegozewski, Denise Maria
contributor_str_mv Opazo, Miguel Angel Uribe
Johann, Jerry Adriani
Borssoi, Joelmir André
Assumpção, Rosangela Aparecida Botinha
Guedes, Luciana Pagliosa Carvalho
Souza, Eduardo Godoy de
dc.subject.por.fl_str_mv Autocorrelação espacial
Dados agrometeorológicos decêndiais
EVI/MODIS
Multiplicação de bandas
topic Autocorrelação espacial
Dados agrometeorológicos decêndiais
EVI/MODIS
Multiplicação de bandas
Decennial agro-meteorological data
EVI/MODIS
Multiplication bands
Spatial autocorrelation.
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Decennial agro-meteorological data
EVI/MODIS
Multiplication bands
Spatial autocorrelation.
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description Estimates of agricultural production are greatly important especially in economy field. However, they depend on area knowledge and cropping yield. Thus, this study aimed to propose a methodology to estimate the areas cropped with soybeans and corn in Paraná State according to multi-temporal EVI/MODIS vegetation index images for 2010/2011, 2011/2012 and 2012/2013 crop years. In addition, there was a research with spatial autocorrelation soybean yield in Paraná, with EVI vegetation index and meteorological variables in a decennial scale and estimate yield using CAR, SAR and GWR models. In Paraná State, there is a drawback to map soybeans crop since corn sowing period is very close to the first one. Therefore, images from the maximum and minimum vegetative vigour were drawn of each studied crop for mapping soybean and corn crops in order to obtain both cropping areas. Although, for the separation, Spectro Angle Mapper algorithm (SAM) was applied by one of the studied crops, while mapping was obtained by multiplying the other bands. Thus, for spatial statistics application of mapped data, the average EV profile of each municipality was extracted as well as for each multi-temporal image, in order to change them into a decennial scale. According to the spatial statistics of such areas, the descriptive analysis of univariate spatial autocorrelation (global and local) of each ten-day variable was used based on the soybean cycle. A bivariate autocorrelation analysis between soybean yield and the studied varieties were also performed. Finalizing the methodology, variables with the highest significant level by stepwise method were selected and SAR, CAR and GWR models were generated to estimate soybean yield. As results, regarding mappings, the following answers for soybean were found out: r = 0.95 and r = 0.99, and while for corn, the answers were: r = 0.72 and r = 0.95 for 2012/2013 and 2013/2014 crop years in relation to the official data from SEAB. So, it has been proved some great efficiency of this methodology to separate and identify crops. When the descriptive statistics of municipalities for each variable was carried out, it was found out that some regions began an early sowing in relation to other ones in Paraná by the decennial vegetation index. The ten-day scale was also possible to be identified according to the climatic factors that caused soybean yield damage. Based on the analysis of spatial autocorrelation, the greatest similarities occurred in 2011/2012 crop year, the one affected by the weather change, whose yields were similar in the municipalities of Paraná State. For spatial modelling, it was observed that selection of decennial variables was different for each studied crop year, and the best model selected by the validation. And GWR was chosen as the best model by the AIC, BIC and adjusted R² validation criteria. The residuals were randomly distributed throughout all the State, so that spatial autocorrelation could be eliminated.
publishDate 2016
dc.date.available.fl_str_mv 2016-07-20
dc.date.issued.fl_str_mv 2016-02-03
dc.date.accessioned.fl_str_mv 2017-07-10T19:24:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GRZEGOZEWSKI, Denise Maria. Mapping and spatial modeling for estimating the yields of agricultural crops with satellite images time series.. 2016. 156 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br:8080/tede/handle/tede/2718
identifier_str_mv GRZEGOZEWSKI, Denise Maria. Mapping and spatial modeling for estimating the yields of agricultural crops with satellite images time series.. 2016. 156 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016.
url http://tede.unioeste.br:8080/tede/handle/tede/2718
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Parana
dc.publisher.program.fl_str_mv Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Engenharia
publisher.none.fl_str_mv Universidade Estadual do Oeste do Parana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/2718/1/DENISE_M_GR_ZEGOZEWSKI.pdf
bitstream.checksum.fl_str_mv 045f54782a1ea2161edf5aa7046a8c1c
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1851949155921952768