Intelligent classification of SPI practices and evidences based on NLP and semantic similarity
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal do Pampa
|
| Programa de Pós-Graduação: |
Mestrado Profissional em Engenharia de Software
|
| Departamento: |
Campus Alegrete
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.unipampa.edu.br/jspui/handle/riu/6753 |
Resumo: | Software Process Improvement (SPI) consists of a set of changes in software development companies, which introduces new and improved methods, techniques, and tools. SPI initiatives generally are performed based on a reference model, such as CMMI, ISO 9001, ISO 15504, among others. One of the first steps when investing in SPI initiatives is the SPI Diagnostic. The SPI Diagnostic is generally performed manually, which demands high effort from consultants. Moreover, a high data volume is generated and must be analyzed, which is bound to subjective analysis. Since there has been a lack of automation tools to support this process, it turns SPI Diagnostic a challenging process. This work aims to propose an intelligent tool called Coptic for Practice-Evidence classification, using Natural Language Processing and Semantic Similarity. We also propose Base of Knowledge about Software Engineering Practices (Badge), which is a domain ontology that generalizes SPI resources that says “what should be done” and PStory, which is a template to write pieces of evidence. We evaluated Badge through a focus group session. We evaluated PStory through an exercise and questionnaire with industry professionals. We evaluated Coptic by a quasi-experiment with PStories evaluated by industry professionals. As an outcome, Coptic presented satisfactory results using the initial corpus. We conclude that Coptic presents a valuable result in terms of providing support to professionals in performing a SPI Diagnostic. Badge introduces a domain ontology that differs from the related proposals in literature and has value to SPI initiatives. We also concluded that PStory introduces a simple way to write pieces of evidence, and Coptic provides support to SPI Practices-Evidence matching process. Key-words: Coptic, Badge, PStory, Software Process Improvement, SPI. |
| id |
UNIP_c9d9ec237d249d74566188d1434fc93f |
|---|---|
| oai_identifier_str |
oai:repositorio.unipampa.edu.br:riu/6753 |
| network_acronym_str |
UNIP |
| network_name_str |
Repositório Institucional da UNIPAMPA |
| repository_id_str |
|
| spelling |
Silva, João Pablo Silva daEcar, Miguel da Silva2022-03-03T19:32:12Z2022-02-182022-03-03T19:32:12Z2021-09-30ECAR, Miguel da Silva. Intelligent classification of SPI practices and evidences based on NLP and semantic similarity. Orientador: João Pablo Silva da Silva. 2021. 117p. Dissertação (Mestrado Profissional em Engenharia de Software) - Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2021.https://repositorio.unipampa.edu.br/jspui/handle/riu/6753Software Process Improvement (SPI) consists of a set of changes in software development companies, which introduces new and improved methods, techniques, and tools. SPI initiatives generally are performed based on a reference model, such as CMMI, ISO 9001, ISO 15504, among others. One of the first steps when investing in SPI initiatives is the SPI Diagnostic. The SPI Diagnostic is generally performed manually, which demands high effort from consultants. Moreover, a high data volume is generated and must be analyzed, which is bound to subjective analysis. Since there has been a lack of automation tools to support this process, it turns SPI Diagnostic a challenging process. This work aims to propose an intelligent tool called Coptic for Practice-Evidence classification, using Natural Language Processing and Semantic Similarity. We also propose Base of Knowledge about Software Engineering Practices (Badge), which is a domain ontology that generalizes SPI resources that says “what should be done” and PStory, which is a template to write pieces of evidence. We evaluated Badge through a focus group session. We evaluated PStory through an exercise and questionnaire with industry professionals. We evaluated Coptic by a quasi-experiment with PStories evaluated by industry professionals. As an outcome, Coptic presented satisfactory results using the initial corpus. We conclude that Coptic presents a valuable result in terms of providing support to professionals in performing a SPI Diagnostic. Badge introduces a domain ontology that differs from the related proposals in literature and has value to SPI initiatives. We also concluded that PStory introduces a simple way to write pieces of evidence, and Coptic provides support to SPI Practices-Evidence matching process. Key-words: Coptic, Badge, PStory, Software Process Improvement, SPI.Melhoria de Processo de Software (MPS) consiste em um conjunto de mudanças nas empresas de desenvolvimento de software, que pode estar relacionado a criação ou melhoria de métodos, técnicas, processos e ferramentas. Iniciativas de MPS geralmente são realizados com base em um modelo de referência, como CMMI, ISO 9001, ISO 15504, entre outros. Um dos primeiros passos ao investir em iniciativas de SPI é o diagnóstico. Na maioria dos casos o diagnóstico é realizado manualmente, o que demanda maior esforço dos consultores. Além disso, um grande volume de dados é gerado e deve ser analisado, o que resulta em análises com certa subjetividade. Como não há ferramentas de automação para dar suporte a esse processo, o diagnóstico torna-se um processo desafiador. Este estudo tem como objetivo propor uma ferramenta inteligente denominada Coptic para classificação de evidências e práticas de MPS, utilizando Processamento de Língua Natural e Similaridade Semântica. Também propomos a Badge, que é uma ontologia de domínio que generaliza recursos de MPS do tipo que dizem “o que deve ser feito” e PStory, que é um modelo para escrita de evidências. A Ontologia Badge foi avaliada através de um grupo focal. Avaliamos o PStory por meio de um exercício e questionário com profissionais da indústria. Coptic foi avaliado através de um quasi-experimento com PStories avaliadas por profissionais da indústria. Como resultado, o Coptic apresentou resultados satisfatórios com o corpus inicial. Concluímos que Badge apresenta uma ontologia de domínio que difere das propostas relacionadas na literatura e tem valor para iniciativas de MPS. O PStory apresenta uma maneira simples de escrever evidências, e o Coptic fornece suporte para o processo de classificação de evidências e práticas de MPS. Palavras-chave: Coptic, Badge, PStory, Melhoria de Processo de Software.engUniversidade Federal do PampaMestrado Profissional em Engenharia de SoftwareUNIPAMPABrasilCampus AlegreteCNPQ::CIENCIAS EXATAS E DA TERRAEngenharia de softwareSoftware - desempenhoSoftware EngineeringSoftware - performanceIntelligent classification of SPI practices and evidences based on NLP and semantic similarityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIPAMPAinstname:Universidade Federal do Pampa (UNIPAMPA)instacron:UNIPAMPAORIGINALMiguel da Silva Ecar - 2021.pdfMiguel da Silva Ecar - 2021.pdfapplication/pdf1210925https://repositorio.unipampa.edu.br/bitstreams/be359277-64cd-4803-8652-ede9c484d9fe/download128d353d93ff20b5b1bf0a7052896b8bMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81854https://repositorio.unipampa.edu.br/bitstreams/9c24ab68-1399-4e50-b1cf-9ffeccaeae07/downloadc9ad5aff503ef7873c4004c5b07c0b27MD52falseAnonymousREADriu/67532022-03-03 19:32:13.348open.accessoai:repositorio.unipampa.edu.br:riu/6753https://repositorio.unipampa.edu.brRepositório InstitucionalPUBhttp://dspace.unipampa.edu.br:8080/oai/requestsisbi@unipampa.edu.bropendoar:2022-03-03T19:32:13Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvCkluc3RpdHVjaW9uYWwgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEKc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcwpmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVU5JUEFNUEEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0bwpwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlICBhIFVOSVBBTVBBIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwCmUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHB1YmxpY2HDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4KVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgcHVibGljYcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUKb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVOSVBBTVBBIG9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcwpuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0bwpvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTwpPUkdBTklTTU8sIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIFRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUwpFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVTklQQU1QQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcwphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4K |
| dc.title.pt_BR.fl_str_mv |
Intelligent classification of SPI practices and evidences based on NLP and semantic similarity |
| title |
Intelligent classification of SPI practices and evidences based on NLP and semantic similarity |
| spellingShingle |
Intelligent classification of SPI practices and evidences based on NLP and semantic similarity Ecar, Miguel da Silva CNPQ::CIENCIAS EXATAS E DA TERRA Engenharia de software Software - desempenho Software Engineering Software - performance |
| title_short |
Intelligent classification of SPI practices and evidences based on NLP and semantic similarity |
| title_full |
Intelligent classification of SPI practices and evidences based on NLP and semantic similarity |
| title_fullStr |
Intelligent classification of SPI practices and evidences based on NLP and semantic similarity |
| title_full_unstemmed |
Intelligent classification of SPI practices and evidences based on NLP and semantic similarity |
| title_sort |
Intelligent classification of SPI practices and evidences based on NLP and semantic similarity |
| author |
Ecar, Miguel da Silva |
| author_facet |
Ecar, Miguel da Silva |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Silva, João Pablo Silva da |
| dc.contributor.author.fl_str_mv |
Ecar, Miguel da Silva |
| contributor_str_mv |
Silva, João Pablo Silva da |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA Engenharia de software Software - desempenho Software Engineering Software - performance |
| dc.subject.por.fl_str_mv |
Engenharia de software Software - desempenho Software Engineering Software - performance |
| description |
Software Process Improvement (SPI) consists of a set of changes in software development companies, which introduces new and improved methods, techniques, and tools. SPI initiatives generally are performed based on a reference model, such as CMMI, ISO 9001, ISO 15504, among others. One of the first steps when investing in SPI initiatives is the SPI Diagnostic. The SPI Diagnostic is generally performed manually, which demands high effort from consultants. Moreover, a high data volume is generated and must be analyzed, which is bound to subjective analysis. Since there has been a lack of automation tools to support this process, it turns SPI Diagnostic a challenging process. This work aims to propose an intelligent tool called Coptic for Practice-Evidence classification, using Natural Language Processing and Semantic Similarity. We also propose Base of Knowledge about Software Engineering Practices (Badge), which is a domain ontology that generalizes SPI resources that says “what should be done” and PStory, which is a template to write pieces of evidence. We evaluated Badge through a focus group session. We evaluated PStory through an exercise and questionnaire with industry professionals. We evaluated Coptic by a quasi-experiment with PStories evaluated by industry professionals. As an outcome, Coptic presented satisfactory results using the initial corpus. We conclude that Coptic presents a valuable result in terms of providing support to professionals in performing a SPI Diagnostic. Badge introduces a domain ontology that differs from the related proposals in literature and has value to SPI initiatives. We also concluded that PStory introduces a simple way to write pieces of evidence, and Coptic provides support to SPI Practices-Evidence matching process. Key-words: Coptic, Badge, PStory, Software Process Improvement, SPI. |
| publishDate |
2021 |
| dc.date.issued.fl_str_mv |
2021-09-30 |
| dc.date.accessioned.fl_str_mv |
2022-03-03T19:32:12Z |
| dc.date.available.fl_str_mv |
2022-02-18 2022-03-03T19:32:12Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
ECAR, Miguel da Silva. Intelligent classification of SPI practices and evidences based on NLP and semantic similarity. Orientador: João Pablo Silva da Silva. 2021. 117p. Dissertação (Mestrado Profissional em Engenharia de Software) - Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2021. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.unipampa.edu.br/jspui/handle/riu/6753 |
| identifier_str_mv |
ECAR, Miguel da Silva. Intelligent classification of SPI practices and evidences based on NLP and semantic similarity. Orientador: João Pablo Silva da Silva. 2021. 117p. Dissertação (Mestrado Profissional em Engenharia de Software) - Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2021. |
| url |
https://repositorio.unipampa.edu.br/jspui/handle/riu/6753 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Pampa |
| dc.publisher.program.fl_str_mv |
Mestrado Profissional em Engenharia de Software |
| dc.publisher.initials.fl_str_mv |
UNIPAMPA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Campus Alegrete |
| publisher.none.fl_str_mv |
Universidade Federal do Pampa |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIPAMPA instname:Universidade Federal do Pampa (UNIPAMPA) instacron:UNIPAMPA |
| instname_str |
Universidade Federal do Pampa (UNIPAMPA) |
| instacron_str |
UNIPAMPA |
| institution |
UNIPAMPA |
| reponame_str |
Repositório Institucional da UNIPAMPA |
| collection |
Repositório Institucional da UNIPAMPA |
| bitstream.url.fl_str_mv |
https://repositorio.unipampa.edu.br/bitstreams/be359277-64cd-4803-8652-ede9c484d9fe/download https://repositorio.unipampa.edu.br/bitstreams/9c24ab68-1399-4e50-b1cf-9ffeccaeae07/download |
| bitstream.checksum.fl_str_mv |
128d353d93ff20b5b1bf0a7052896b8b c9ad5aff503ef7873c4004c5b07c0b27 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA) |
| repository.mail.fl_str_mv |
sisbi@unipampa.edu.br |
| _version_ |
1854750408796274688 |