Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Rosa, Vinicius Augusto Matheus [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
SHM
Link de acesso: http://hdl.handle.net/11449/144187
Resumo: Este trabalho analisa um método de Monitoramento da Integridade de Estruturas (SHM, do inglês Structural Health Monitoring) usando funções erro calculadas a partir de ondas guiadas que são refletidas nos danos. Este método foi primeiro testado por Gorgin et al em 2014, que apresentou o método aplicado para materiais isotrópicos. A abordagem é testada experimentalmente em materiais anisotrópicos e isotrópicos. O sinal da estrutura intacta, que será referido como baseline e o sinal atual para cada caminho de propagação (entre dois transdutores PZT) são medidos e a energia do sinal de dispersão para cada caminho é calculada em um dado intervalo. Assumindo que existe dano no ponto avaliado, a onda irá refletir neste ponto e se propagar até o sensor. A técnica é baseada no tempo de propagação (time-of-flight) entre o atuador (primeiro transdutor PZT) até o ponto avaliado mais o tempo de propagação do ponto avaliado até o sensor (segundo transdutor PZT, em uma configuração pitch-catch) para cada ponto da estrutura. A velocidade de propagação em materiais anisotrópicos é dependente da direção de propagação. Isto não acontece em materiais isotrópicos, onde a velocidade de propagação é constante e não é dependente da direção de propagação. No caso de materiais anisotrópicos as velocidades de propagação para diferentes direções foram calculadas experimentalmente e incorporadas ao algoritmo para calcular o time-of-flight corretamente para todos os pontos da estrutura. A energia do sinal de dispersão é calculada em um intervalo baseado no time-of-flight de cada posição analisada. A estimativa da localização do dano é definida através de uma função erro resultante para cada ponto da área monitorada. Como a função erro é baseada na interferência do dano na propagação de ondas guiadas, o maior valor da função erro mostra uma menor probabilidade de dano naquela posição. Uma imagem é gerada com um valor da função erro para cada ponto avaliado da estrutura. A função erro compara valores de energia nos devidos intervalos para cada par de transdutores PZT. O método foi aplicado para várias frequências de excitação, afim de obter-se um resultado melhor.
id UNSP_2a1cf9e16001955cdc85862d799194ea
oai_identifier_str oai:repositorio.unesp.br:11449/144187
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling Localização de danos em estruturas anisotrópicas com a utilização de Ondas GuiadasDamage localization in anisotropic structures using Guided WavesMateriais compósitosOndas guiadasSHMDiagnóstico por imagensTransdutores PZTComposite materialsGuided wavesSHMImaging diagnosticPZT transducersEste trabalho analisa um método de Monitoramento da Integridade de Estruturas (SHM, do inglês Structural Health Monitoring) usando funções erro calculadas a partir de ondas guiadas que são refletidas nos danos. Este método foi primeiro testado por Gorgin et al em 2014, que apresentou o método aplicado para materiais isotrópicos. A abordagem é testada experimentalmente em materiais anisotrópicos e isotrópicos. O sinal da estrutura intacta, que será referido como baseline e o sinal atual para cada caminho de propagação (entre dois transdutores PZT) são medidos e a energia do sinal de dispersão para cada caminho é calculada em um dado intervalo. Assumindo que existe dano no ponto avaliado, a onda irá refletir neste ponto e se propagar até o sensor. A técnica é baseada no tempo de propagação (time-of-flight) entre o atuador (primeiro transdutor PZT) até o ponto avaliado mais o tempo de propagação do ponto avaliado até o sensor (segundo transdutor PZT, em uma configuração pitch-catch) para cada ponto da estrutura. A velocidade de propagação em materiais anisotrópicos é dependente da direção de propagação. Isto não acontece em materiais isotrópicos, onde a velocidade de propagação é constante e não é dependente da direção de propagação. No caso de materiais anisotrópicos as velocidades de propagação para diferentes direções foram calculadas experimentalmente e incorporadas ao algoritmo para calcular o time-of-flight corretamente para todos os pontos da estrutura. A energia do sinal de dispersão é calculada em um intervalo baseado no time-of-flight de cada posição analisada. A estimativa da localização do dano é definida através de uma função erro resultante para cada ponto da área monitorada. Como a função erro é baseada na interferência do dano na propagação de ondas guiadas, o maior valor da função erro mostra uma menor probabilidade de dano naquela posição. Uma imagem é gerada com um valor da função erro para cada ponto avaliado da estrutura. A função erro compara valores de energia nos devidos intervalos para cada par de transdutores PZT. O método foi aplicado para várias frequências de excitação, afim de obter-se um resultado melhor.This work highlights a method for Structural Health Monitoring using error functions computed from guided waves reflected from damage. This method was first tested by Gorgin et al in 2014, who presented the method for isotropic plates. The approach is experimentally tested on anisotropic and isotropic specimens such as composite and aluminum plates, respectively. The baseline and test signals of each sensing path (between two PZT transducers) are measured and the energy of the scatter signal for each path is calculated in a given range. The structure is meshed and the middle point of each component is considered in the calculations. Assuming that there is damage in the evaluated position, the wave will reflect at this point and propagate to the next transducer. The technique is based in the time-of-flight between the actuator (first PZT transducer) and the evaluated point plus the time-of-flight of the evaluated point to the sensor (second PZT transducer, for a pitch-catch configuration) for each mesh component of the structure. The wave speeds in anisotropic specimens are propagation direction dependent. It does not happen in isotropic materials, which have the wave speed constant and non-dependent of the propagation direction. In the case of anisotropic materials, the wave speed for different angles were experimentally computed and incorporated in the algorithm in order to calculate the proper time-of-flight. The energy of the scatter signal is computed in a time range based on the time of flight of each analyzed position. The estimated damage location is defined through a resultant error function for each evaluated point in the monitored area. As the error function is based on the interference of the damage in the propagation of guided waves, the higher value of the error implies the less likelihood of damage in that position. An image is generated with an error value for each mesh position in the plate. This error function compares the energy in the given ranges for each pair of transducers. In addition, several frequencies were tested and the results for each one were combined in order to get a better result.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 160328/2014-4Universidade Estadual Paulista (Unesp)Lopes Junior, Vicente [UNESP]Universidade Estadual Paulista (Unesp)Rosa, Vinicius Augusto Matheus [UNESP]2016-09-27T14:30:43Z2016-09-27T14:30:43Z2016-07-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/14418700087309833004099082P28338952092032444porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-05T18:15:45Zoai:repositorio.unesp.br:11449/144187Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-08-05T18:15:45Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas
Damage localization in anisotropic structures using Guided Waves
title Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas
spellingShingle Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas
Rosa, Vinicius Augusto Matheus [UNESP]
Materiais compósitos
Ondas guiadas
SHM
Diagnóstico por imagens
Transdutores PZT
Composite materials
Guided waves
SHM
Imaging diagnostic
PZT transducers
title_short Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas
title_full Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas
title_fullStr Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas
title_full_unstemmed Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas
title_sort Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas
author Rosa, Vinicius Augusto Matheus [UNESP]
author_facet Rosa, Vinicius Augusto Matheus [UNESP]
author_role author
dc.contributor.none.fl_str_mv Lopes Junior, Vicente [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Rosa, Vinicius Augusto Matheus [UNESP]
dc.subject.por.fl_str_mv Materiais compósitos
Ondas guiadas
SHM
Diagnóstico por imagens
Transdutores PZT
Composite materials
Guided waves
SHM
Imaging diagnostic
PZT transducers
topic Materiais compósitos
Ondas guiadas
SHM
Diagnóstico por imagens
Transdutores PZT
Composite materials
Guided waves
SHM
Imaging diagnostic
PZT transducers
description Este trabalho analisa um método de Monitoramento da Integridade de Estruturas (SHM, do inglês Structural Health Monitoring) usando funções erro calculadas a partir de ondas guiadas que são refletidas nos danos. Este método foi primeiro testado por Gorgin et al em 2014, que apresentou o método aplicado para materiais isotrópicos. A abordagem é testada experimentalmente em materiais anisotrópicos e isotrópicos. O sinal da estrutura intacta, que será referido como baseline e o sinal atual para cada caminho de propagação (entre dois transdutores PZT) são medidos e a energia do sinal de dispersão para cada caminho é calculada em um dado intervalo. Assumindo que existe dano no ponto avaliado, a onda irá refletir neste ponto e se propagar até o sensor. A técnica é baseada no tempo de propagação (time-of-flight) entre o atuador (primeiro transdutor PZT) até o ponto avaliado mais o tempo de propagação do ponto avaliado até o sensor (segundo transdutor PZT, em uma configuração pitch-catch) para cada ponto da estrutura. A velocidade de propagação em materiais anisotrópicos é dependente da direção de propagação. Isto não acontece em materiais isotrópicos, onde a velocidade de propagação é constante e não é dependente da direção de propagação. No caso de materiais anisotrópicos as velocidades de propagação para diferentes direções foram calculadas experimentalmente e incorporadas ao algoritmo para calcular o time-of-flight corretamente para todos os pontos da estrutura. A energia do sinal de dispersão é calculada em um intervalo baseado no time-of-flight de cada posição analisada. A estimativa da localização do dano é definida através de uma função erro resultante para cada ponto da área monitorada. Como a função erro é baseada na interferência do dano na propagação de ondas guiadas, o maior valor da função erro mostra uma menor probabilidade de dano naquela posição. Uma imagem é gerada com um valor da função erro para cada ponto avaliado da estrutura. A função erro compara valores de energia nos devidos intervalos para cada par de transdutores PZT. O método foi aplicado para várias frequências de excitação, afim de obter-se um resultado melhor.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-27T14:30:43Z
2016-09-27T14:30:43Z
2016-07-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/144187
000873098
33004099082P2
8338952092032444
url http://hdl.handle.net/11449/144187
identifier_str_mv 000873098
33004099082P2
8338952092032444
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854954688363888640