Exportação concluída — 

Otimização de problemas multimodais usando meta-heurísticas evolutivas

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Uzinski, Henrique [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/115780
Resumo: Neste trabalho é proposta a resolução de problemas multimodais usando duas diferentes meta-heurísticas: Algoritmo Genético de Chu-Beasley modificado e o Algoritmo Genético de Chaves Aleatórias Viciadas (BRKGA), com foco principal nos resultados obtidos por esta última. É feita especificamente a implementação das meta-heurísticas e comparação dos resultados obtidos por estas diferentes técnicas. Uma característica muito importante do BRKGA é a estruturação que permite separar o algoritmo em duas parcelas claramente diferenciadas, uma parcela que depende exclusivamente das características do BRKGA e, portanto, independente do problema que se pretende resolver e outra parcela que depende exclusivamente das características especificas do problema que pretendemos resolver. Essa característica geral do BRKGA permite que ele seja facilmente aplicado a uma grande variedade de problemas, já que a primeira parcela pode ser integralmente aproveitada na resolução de um novo problema. Por outro lado, o Algoritmo Genético de Chu-Beasley (AGCB) é caracterizado pela substituição de um único indivíduo no ciclo geracional e pelo controle máximo de diversidade, mas isto não é suficiente para resolução de problemas complexos e multimodais, sendo assim, é apresentado o AGCB modificado, onde o critério de diversidade é estendido, a população inicial e o descendente gerado no ciclo geracional passa por uma melhoria local. Essas características tornam-o competitivo justificando a comparação com o BRKGA
id UNSP_4482eca9f74f8d63ccdb5947865f5827
oai_identifier_str oai:repositorio.unesp.br:11449/115780
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling Otimização de problemas multimodais usando meta-heurísticas evolutivasAlgoritmos genéticosHeuristicaProgramação heuristicaGenetic algorithmsNeste trabalho é proposta a resolução de problemas multimodais usando duas diferentes meta-heurísticas: Algoritmo Genético de Chu-Beasley modificado e o Algoritmo Genético de Chaves Aleatórias Viciadas (BRKGA), com foco principal nos resultados obtidos por esta última. É feita especificamente a implementação das meta-heurísticas e comparação dos resultados obtidos por estas diferentes técnicas. Uma característica muito importante do BRKGA é a estruturação que permite separar o algoritmo em duas parcelas claramente diferenciadas, uma parcela que depende exclusivamente das características do BRKGA e, portanto, independente do problema que se pretende resolver e outra parcela que depende exclusivamente das características especificas do problema que pretendemos resolver. Essa característica geral do BRKGA permite que ele seja facilmente aplicado a uma grande variedade de problemas, já que a primeira parcela pode ser integralmente aproveitada na resolução de um novo problema. Por outro lado, o Algoritmo Genético de Chu-Beasley (AGCB) é caracterizado pela substituição de um único indivíduo no ciclo geracional e pelo controle máximo de diversidade, mas isto não é suficiente para resolução de problemas complexos e multimodais, sendo assim, é apresentado o AGCB modificado, onde o critério de diversidade é estendido, a população inicial e o descendente gerado no ciclo geracional passa por uma melhoria local. Essas características tornam-o competitivo justificando a comparação com o BRKGAIn this work it is proposed the resolution of multimodal problems using two different meta- heuristics: Chu-Beasley’s Genetic Algorithm and Biased Random Key Genetic Algorithm (BRKGA), focusing mainly on the results obtained by the latter. Specifically the imple- mentation and comparison of results obtained by these different techniques is made. There are several metaheuristics, each with its own specific characteristics which have advan- tages and disadvantages for the resolution of certain problems and in several ways in the implementation and results. A very important feature of the BRKGA is the structure that allows to separate the algorithm into two clearly different parts, one part that depends exclusively on the characteristics of BRKGA and therefore independent of the problem to be solved and another part that depends exclusively on the specific characteristics of the problem we intend to solve. This general feature of the BRKGA allows it to be readily applied to a variety of problems, because the first component part can be fully utilized to solve a new problem. On the other hand, Chu-Beasley’s Genetic Algorithm (AGCB) is characterized by the replacement of a single individual in the generation cycle and by maximum control of diversity, but this is not enough to solve complex and multimodal problems, therefore it is presented the modified AGCB, where the diversity criterion is extended, the initial population and the descendant generated in the generational cycle passes through a local improvement. These features make it competitive, justifying the comparison with BRKGAUniversidade Estadual Paulista (Unesp)Lázaro, Rubén Augusto Romero [UNESP]Universidade Estadual Paulista (Unesp)Uzinski, Henrique [UNESP]2015-03-03T11:52:33Z2015-03-03T11:52:33Z2014-10-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis81 f. : il.application/pdfUZINSKI, Henrique. Otimização de problemas multimodais usando meta-heurísticas evolutivas. 2014. 81 f. Dissertação (mestrado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia, 2014.http://hdl.handle.net/11449/115780000808114000808114.pdf33004099080P07303300747184265Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2024-08-05T17:41:56Zoai:repositorio.unesp.br:11449/115780Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-08-05T17:41:56Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Otimização de problemas multimodais usando meta-heurísticas evolutivas
title Otimização de problemas multimodais usando meta-heurísticas evolutivas
spellingShingle Otimização de problemas multimodais usando meta-heurísticas evolutivas
Uzinski, Henrique [UNESP]
Algoritmos genéticos
Heuristica
Programação heuristica
Genetic algorithms
title_short Otimização de problemas multimodais usando meta-heurísticas evolutivas
title_full Otimização de problemas multimodais usando meta-heurísticas evolutivas
title_fullStr Otimização de problemas multimodais usando meta-heurísticas evolutivas
title_full_unstemmed Otimização de problemas multimodais usando meta-heurísticas evolutivas
title_sort Otimização de problemas multimodais usando meta-heurísticas evolutivas
author Uzinski, Henrique [UNESP]
author_facet Uzinski, Henrique [UNESP]
author_role author
dc.contributor.none.fl_str_mv Lázaro, Rubén Augusto Romero [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Uzinski, Henrique [UNESP]
dc.subject.por.fl_str_mv Algoritmos genéticos
Heuristica
Programação heuristica
Genetic algorithms
topic Algoritmos genéticos
Heuristica
Programação heuristica
Genetic algorithms
description Neste trabalho é proposta a resolução de problemas multimodais usando duas diferentes meta-heurísticas: Algoritmo Genético de Chu-Beasley modificado e o Algoritmo Genético de Chaves Aleatórias Viciadas (BRKGA), com foco principal nos resultados obtidos por esta última. É feita especificamente a implementação das meta-heurísticas e comparação dos resultados obtidos por estas diferentes técnicas. Uma característica muito importante do BRKGA é a estruturação que permite separar o algoritmo em duas parcelas claramente diferenciadas, uma parcela que depende exclusivamente das características do BRKGA e, portanto, independente do problema que se pretende resolver e outra parcela que depende exclusivamente das características especificas do problema que pretendemos resolver. Essa característica geral do BRKGA permite que ele seja facilmente aplicado a uma grande variedade de problemas, já que a primeira parcela pode ser integralmente aproveitada na resolução de um novo problema. Por outro lado, o Algoritmo Genético de Chu-Beasley (AGCB) é caracterizado pela substituição de um único indivíduo no ciclo geracional e pelo controle máximo de diversidade, mas isto não é suficiente para resolução de problemas complexos e multimodais, sendo assim, é apresentado o AGCB modificado, onde o critério de diversidade é estendido, a população inicial e o descendente gerado no ciclo geracional passa por uma melhoria local. Essas características tornam-o competitivo justificando a comparação com o BRKGA
publishDate 2014
dc.date.none.fl_str_mv 2014-10-24
2015-03-03T11:52:33Z
2015-03-03T11:52:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv UZINSKI, Henrique. Otimização de problemas multimodais usando meta-heurísticas evolutivas. 2014. 81 f. Dissertação (mestrado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia, 2014.
http://hdl.handle.net/11449/115780
000808114
000808114.pdf
33004099080P0
7303300747184265
identifier_str_mv UZINSKI, Henrique. Otimização de problemas multimodais usando meta-heurísticas evolutivas. 2014. 81 f. Dissertação (mestrado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia, 2014.
000808114
000808114.pdf
33004099080P0
7303300747184265
url http://hdl.handle.net/11449/115780
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 81 f. : il.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854954789317640192