Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi
| Ano de defesa: | 2009 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://hdl.handle.net/11449/91909 |
Resumo: | O problema de bilhar teve origem em 1927 quando G.D. Birkhoff considerou um sistema para descrever o movimento de uma partícula livre dentro de uma região fechada por uma fronteira com a qual sofre colisões. Ao atingir a fronteira a partícula é refletida e viaja com velocidade constante até a próxima colisão. Nesse trabalho consideramos um modelo bidimensional conhecido na literatura como Bilhar Elíptico-ovóide. O raio da fronteira em coordenadas polares é dado por R(θ, p, e, є) = (1−e2)/[1+e cos(θ)]+є cos(pθ). Este modelo comporta-se como uma combinação dos bilhares elíptico e ovóide. Se considerarmos o caso em que a excentricidade e = 0 recuperamos os resultados para o bilhar ovóide, por outro lado, se a deformação na fronteira for nula, є = 0, os resultados para o bilhar elíptico são recuperados. Tal modelo consiste em considerar o movimento de uma partícula clássica de massa m movendo-se livremente no interior de uma região fechada. Ao colidir com a fronteira a trajetória da partícula muda de direção sem sofrer perdas de energia. Encontramos as expressões que descrevem a dinâmica do modelo nas variáveis posição angular e ângulo que a trajetória faz com a reta tangente à curva no ponto de colisão e discutimos nossos resultados numéricos. Observamos que o espaço de fases é do tipo misto, contendo ilhas do tipo Kolmogorov-Arnold-Moser (KAM) geralmente envoltas por um mar de caos, caracterizado por um expoente de Lyapunov positivo, e curvas invariantes do tipo spanning separando diferente regiões do espaço de fases. Entretanto, à medida que os parâmetros de controle são variados, a forma da fronteira se altera, podendo ocorrer que algumas regiões da fronteira passam a ter curvatura negativa. Uma implicação imediata deste comportamento é a destruição das curvas invariantes spanning no espaço de fases.... |
| id |
UNSP_9790146cd2c7a87281ccd401c3cbbaad |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/91909 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
|
| spelling |
Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de FermiFisica matematicaBilharesAcelerador de FermiCaosBilliard problemsO problema de bilhar teve origem em 1927 quando G.D. Birkhoff considerou um sistema para descrever o movimento de uma partícula livre dentro de uma região fechada por uma fronteira com a qual sofre colisões. Ao atingir a fronteira a partícula é refletida e viaja com velocidade constante até a próxima colisão. Nesse trabalho consideramos um modelo bidimensional conhecido na literatura como Bilhar Elíptico-ovóide. O raio da fronteira em coordenadas polares é dado por R(θ, p, e, є) = (1−e2)/[1+e cos(θ)]+є cos(pθ). Este modelo comporta-se como uma combinação dos bilhares elíptico e ovóide. Se considerarmos o caso em que a excentricidade e = 0 recuperamos os resultados para o bilhar ovóide, por outro lado, se a deformação na fronteira for nula, є = 0, os resultados para o bilhar elíptico são recuperados. Tal modelo consiste em considerar o movimento de uma partícula clássica de massa m movendo-se livremente no interior de uma região fechada. Ao colidir com a fronteira a trajetória da partícula muda de direção sem sofrer perdas de energia. Encontramos as expressões que descrevem a dinâmica do modelo nas variáveis posição angular e ângulo que a trajetória faz com a reta tangente à curva no ponto de colisão e discutimos nossos resultados numéricos. Observamos que o espaço de fases é do tipo misto, contendo ilhas do tipo Kolmogorov-Arnold-Moser (KAM) geralmente envoltas por um mar de caos, caracterizado por um expoente de Lyapunov positivo, e curvas invariantes do tipo spanning separando diferente regiões do espaço de fases. Entretanto, à medida que os parâmetros de controle são variados, a forma da fronteira se altera, podendo ocorrer que algumas regiões da fronteira passam a ter curvatura negativa. Uma implicação imediata deste comportamento é a destruição das curvas invariantes spanning no espaço de fases....The interest in understanding the dynamics of billiard problems becomes in earlies 1927 when Birkhoff introduced a system to describe the motion of a free particle inside a closed region with which the particle suffers elastic collisions. Inside the billiard, a point particle of mass m moves freely along a straight line until it hits the boundary. After the collision, it is assumed that the particle is specularly reflected. In our work we propose a special geometry for the boundary of a classical billiard, which we call as elliptical-oval boundary. The radius of the boundary in polar coordinates is given by R(θ, p, e, є) = (1−e2)/[1+e cos(θ)]+є cos(pθ). It is important to say that the shape of the boundary is controlled by three relevant control parameters, namely p=integer number, є = deformation of the boundary and e is the eccentricity. We obtain and discuss some numerical results considering different possibles combination of the control parameters. In our approach, we obtained a map that describe the particle’s dynamics and show that there are a critical value for the parameter є. We show that the phase space has different structures when є > єc and є < єc. Finaly, we obtained the positive Lyapunov Exponent reinforcing that the model has a chaotic behaviour. After studying the static version, we revisit the problem of a classical particle bouncing elastically inside a periodically time varying Oval billiard. The problem is described using a four dimensional mapping for the variables velocity of the particle; time immediately after a collision with the moving boundary; the angle that the trajectory of the particle does with the tangent at the position of the hit; and the angular position of the particle along the boundary. Our main goal is to understand and describe the behaviour of the particle’s average velocity (and hence its energy) as a function of the number of ...(Complete abstract click electronic access below)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Estadual Paulista (Unesp)Leonel, Edson Denis [UNESP]Universidade Estadual Paulista (Unesp)Oliveira, Diego Fregolente Mendes de [UNESP]2014-06-11T19:25:31Z2014-06-11T19:25:31Z2009-07-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis73 f. : il.application/pdfOLIVEIRA, Diego Fregolente Mendes de. Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi. 2009. 73 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, 2009.http://hdl.handle.net/11449/91909000591891oliveira_dfm_me_rcla.pdf33004137063P661306442327186100000-0001-8224-3329Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2024-11-28T18:15:24Zoai:repositorio.unesp.br:11449/91909Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-28T18:15:24Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi |
| title |
Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi |
| spellingShingle |
Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi Oliveira, Diego Fregolente Mendes de [UNESP] Fisica matematica Bilhares Acelerador de Fermi Caos Billiard problems |
| title_short |
Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi |
| title_full |
Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi |
| title_fullStr |
Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi |
| title_full_unstemmed |
Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi |
| title_sort |
Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi |
| author |
Oliveira, Diego Fregolente Mendes de [UNESP] |
| author_facet |
Oliveira, Diego Fregolente Mendes de [UNESP] |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Leonel, Edson Denis [UNESP] Universidade Estadual Paulista (Unesp) |
| dc.contributor.author.fl_str_mv |
Oliveira, Diego Fregolente Mendes de [UNESP] |
| dc.subject.por.fl_str_mv |
Fisica matematica Bilhares Acelerador de Fermi Caos Billiard problems |
| topic |
Fisica matematica Bilhares Acelerador de Fermi Caos Billiard problems |
| description |
O problema de bilhar teve origem em 1927 quando G.D. Birkhoff considerou um sistema para descrever o movimento de uma partícula livre dentro de uma região fechada por uma fronteira com a qual sofre colisões. Ao atingir a fronteira a partícula é refletida e viaja com velocidade constante até a próxima colisão. Nesse trabalho consideramos um modelo bidimensional conhecido na literatura como Bilhar Elíptico-ovóide. O raio da fronteira em coordenadas polares é dado por R(θ, p, e, є) = (1−e2)/[1+e cos(θ)]+є cos(pθ). Este modelo comporta-se como uma combinação dos bilhares elíptico e ovóide. Se considerarmos o caso em que a excentricidade e = 0 recuperamos os resultados para o bilhar ovóide, por outro lado, se a deformação na fronteira for nula, є = 0, os resultados para o bilhar elíptico são recuperados. Tal modelo consiste em considerar o movimento de uma partícula clássica de massa m movendo-se livremente no interior de uma região fechada. Ao colidir com a fronteira a trajetória da partícula muda de direção sem sofrer perdas de energia. Encontramos as expressões que descrevem a dinâmica do modelo nas variáveis posição angular e ângulo que a trajetória faz com a reta tangente à curva no ponto de colisão e discutimos nossos resultados numéricos. Observamos que o espaço de fases é do tipo misto, contendo ilhas do tipo Kolmogorov-Arnold-Moser (KAM) geralmente envoltas por um mar de caos, caracterizado por um expoente de Lyapunov positivo, e curvas invariantes do tipo spanning separando diferente regiões do espaço de fases. Entretanto, à medida que os parâmetros de controle são variados, a forma da fronteira se altera, podendo ocorrer que algumas regiões da fronteira passam a ter curvatura negativa. Uma implicação imediata deste comportamento é a destruição das curvas invariantes spanning no espaço de fases.... |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009-07-08 2014-06-11T19:25:31Z 2014-06-11T19:25:31Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
OLIVEIRA, Diego Fregolente Mendes de. Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi. 2009. 73 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, 2009. http://hdl.handle.net/11449/91909 000591891 oliveira_dfm_me_rcla.pdf 33004137063P6 6130644232718610 0000-0001-8224-3329 |
| identifier_str_mv |
OLIVEIRA, Diego Fregolente Mendes de. Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de Fermi. 2009. 73 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, 2009. 000591891 oliveira_dfm_me_rcla.pdf 33004137063P6 6130644232718610 0000-0001-8224-3329 |
| url |
http://hdl.handle.net/11449/91909 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
73 f. : il. application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
| publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
| dc.source.none.fl_str_mv |
Aleph reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1854954320931323904 |