O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Martins, Michel Simões [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/11449/256611
Resumo: A cranioplastia é um procedimento cirúrgico bastante conhecido na neurocirurgia cujo caráter reparatório visa a restaurar defeitos cranianos gerados por traumas, má-formação congênita e outras neurocirurgias como, por exemplo, a craniectomia. A restauração tem por finalidade garantir a proteção biomecânica dos tecidos moles subjacentes ao implante, normalizar a pressão intracraniana, restaurar a dinâmica normal do fluxo de líquido cefalorraquidiano, e reduzir as chances de complicações pós-operatórias de craniectomias. Os impactos da cranioplastia são benéficos ao paciente, tanto do ponto de vista neurológico, quanto psicossocial. Atualmente, a fabricação de implantes cranianos pode ser obtida através de um processo chamado de prototipagem rápida. Tal processo envolve a modelagem digital do implante em software CAD e sua impressão 3D em bioimpressora. Nos casos de cranioplastia após craniectomia, estudos apontam que o potencial de redução de riscos de complicações pós-operatórias ao paciente é maior quando a criação do implante craniano acontece por prototipagem rápida, devido a precisão e agilidade inerente ao processo em relação a processos convencionais de fabricação do implante. No entanto, essa precisão e agilidade nem sempre são garantidas pois são fundamentalmente dependentes tanto da qualidade e propriedades do biomaterial e impressora 3D utilizadas durante a bioimpressão, quanto da experiência e habilidade do desenhista CAD, e dos recursos de ferramentas internas ao software CAD que lhe serão disponíveis durante a modelagem digital do implante, visto que os recursos rápidos e semiautomáticos se tornam inaplicáveis conforme a complexidade do defeito craniano aumenta. Pensando nisso, a presente pesquisa se propôs a demonstrar como a modelagem digital de implantes cranianos pode ser tratada de maneira automatizada e orientada por dados, através do uso de inteligência artificial generativa. A modelagem digital do implante foi tratada como uma tarefa de conclusão de nuvem de pontos, na qual a subtração booleana entre a geração de saída e sua respectiva entrada resultou no modelo digital tridimensional do implante. Para o treinamento e avaliação da rede neural generativa autocodificadora convolucional foi necessário a construção de um conjunto de dados multiclassificado e balanceado, através de metodologias de amostragem híbrida e registro de imagens tridimensionais. Os resultados foram quantificados por métricas que medem a similaridade e dissimilaridade do modelo digital de implante na relação resultado-referência. Os resultados obtidos foram uma distância de Hausdorff média de 24,22 mm e um coeficiente de similaridade de Dice média de 0,726, ou seja, aproximadamente 73% de precisão. Como conclusão, esse trabalho aponta que o uso de inteligência artificial generativa na modelagem digital de implantes cranianos é uma abordagem promissora, e além de contribuir com a rapidez com que o implante bioimpresso estaria a disposição para a realização de uma cranioplastia precoce, também contribui com o alívio da complexidade, demanda de experiência, consumo de tempo em modelagens complexas, e altos custos relacionados ao licenciamento de uso de softwares CAD médicos. Espera-se que as contribuições deste projeto estimulem o surgimento de novas pesquisas na área, visando inovações tecnológicas ao processo de fabricação de implantes bioimpressos.
id UNSP_bb94c6283ab484e1defa200ac27d53d2
oai_identifier_str oai:repositorio.unesp.br:11449/256611
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastiaUsing generative artificial intelligence in digital modeling of personalized implants for cranioplastyInteligência Artificial GenerativaGenerative Artificial IntelligenceImplante CranianoModelagem Digital de ImplantesCranioplastiaReconstrução de CrânioPrototipagem RápidaImpressão 3DBioimpressãoAprendizagem de MáquinaReconstrução de FormaConclusão de Nuvem de PontosCranial ImplantDigital Implant ModelingCranioplastySkull ReconstructionRapid Prototyping3D PrintingBioprintingMachine LearningShape ReconstructionPoint Cloud CompletionA cranioplastia é um procedimento cirúrgico bastante conhecido na neurocirurgia cujo caráter reparatório visa a restaurar defeitos cranianos gerados por traumas, má-formação congênita e outras neurocirurgias como, por exemplo, a craniectomia. A restauração tem por finalidade garantir a proteção biomecânica dos tecidos moles subjacentes ao implante, normalizar a pressão intracraniana, restaurar a dinâmica normal do fluxo de líquido cefalorraquidiano, e reduzir as chances de complicações pós-operatórias de craniectomias. Os impactos da cranioplastia são benéficos ao paciente, tanto do ponto de vista neurológico, quanto psicossocial. Atualmente, a fabricação de implantes cranianos pode ser obtida através de um processo chamado de prototipagem rápida. Tal processo envolve a modelagem digital do implante em software CAD e sua impressão 3D em bioimpressora. Nos casos de cranioplastia após craniectomia, estudos apontam que o potencial de redução de riscos de complicações pós-operatórias ao paciente é maior quando a criação do implante craniano acontece por prototipagem rápida, devido a precisão e agilidade inerente ao processo em relação a processos convencionais de fabricação do implante. No entanto, essa precisão e agilidade nem sempre são garantidas pois são fundamentalmente dependentes tanto da qualidade e propriedades do biomaterial e impressora 3D utilizadas durante a bioimpressão, quanto da experiência e habilidade do desenhista CAD, e dos recursos de ferramentas internas ao software CAD que lhe serão disponíveis durante a modelagem digital do implante, visto que os recursos rápidos e semiautomáticos se tornam inaplicáveis conforme a complexidade do defeito craniano aumenta. Pensando nisso, a presente pesquisa se propôs a demonstrar como a modelagem digital de implantes cranianos pode ser tratada de maneira automatizada e orientada por dados, através do uso de inteligência artificial generativa. A modelagem digital do implante foi tratada como uma tarefa de conclusão de nuvem de pontos, na qual a subtração booleana entre a geração de saída e sua respectiva entrada resultou no modelo digital tridimensional do implante. Para o treinamento e avaliação da rede neural generativa autocodificadora convolucional foi necessário a construção de um conjunto de dados multiclassificado e balanceado, através de metodologias de amostragem híbrida e registro de imagens tridimensionais. Os resultados foram quantificados por métricas que medem a similaridade e dissimilaridade do modelo digital de implante na relação resultado-referência. Os resultados obtidos foram uma distância de Hausdorff média de 24,22 mm e um coeficiente de similaridade de Dice média de 0,726, ou seja, aproximadamente 73% de precisão. Como conclusão, esse trabalho aponta que o uso de inteligência artificial generativa na modelagem digital de implantes cranianos é uma abordagem promissora, e além de contribuir com a rapidez com que o implante bioimpresso estaria a disposição para a realização de uma cranioplastia precoce, também contribui com o alívio da complexidade, demanda de experiência, consumo de tempo em modelagens complexas, e altos custos relacionados ao licenciamento de uso de softwares CAD médicos. Espera-se que as contribuições deste projeto estimulem o surgimento de novas pesquisas na área, visando inovações tecnológicas ao processo de fabricação de implantes bioimpressos.Cranioplasty is a well-recognized surgical procedure in neurosurgery that is intended to repair cranial defects caused by trauma, congenital abnormalities, and other neurosurgical interventions, including craniectomy. The primary goal is to safeguard soft tissues beneath the implant, regulate intracranial pressure, normalize cerebrospinal fluid flow, and minimize risks of post-operative complications following craniectomies. The benefits of cranioplasty for the patient are significant, addressing both neurological and psychosocial aspects. In the current scenario, due to advancements in additive manufacturing, cranial implants can now be fabricated using a technique known as rapid prototyping. This technique involves generating a digital model of the implant using CAD software and subsequently producing it through 3D printing with a bio-printer. Studies have shown that employing rapid prototyping to create cranial implants for cranioplasty following craniectomy can potentially reduce post-operative complications for the patient, due to the precision and adaptability inherent in the process compared to conventional methods of implant manufacturing. However, the reliability of this precision and flexibility is not always guaranteed, as they heavily depend on both the quality and characteristics of the biomaterial and 3D printer used for bio-printing, as well as the expertise and proficiency of the CAD designer, along with the tools available in the CAD software for digital implant modeling. This is especially true when dealing with complex cranial defects, where rapid and semi-automatic tools may no longer be suitable. Given this consideration, the present study sought to portray how digital cranial implant modeling can be managed through automated processes and data-driven approaches utilizing generative artificial intelligence. The process of digital implant modeling was addressed here as a point cloud completion task, in which the boolean subtraction between the generated output and the corresponding input results in the three-dimensional digital model of the implant. For training and evaluating the generative convolutional autoencoder neural network, the creation of a well-balanced and multiclassified dataset was essentially achieved through hybrid sampling methods and registration of three-dimensional images. The findings revealed an accuracy rate of approximately 73% When employing a generative model based on convolutional autoencoder neural network architecture. As conclusion, this study proposes that employing generative artificial intelligence in digital cranial implant modeling shows promise. This approach could expedite the availability of bio-printed implants for early cranioplasty, as well as streamline the intricate modeling process, reducing the need for extensive expertise, lowering time consumption, and mitigating the high costs associated with medical CAD software licensing. It is anticipated that the findings of this research will inspire further exploration in the field, focusing on technological advancements in the production of bio-printed implants.Universidade Estadual Paulista (Unesp)Guastaldi, Antonio Carlos [UNESP]Martins, Michel Simões [UNESP]2024-07-16T21:48:11Z2024-07-16T21:48:11Z2024-04-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMARTINS, M. S. O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia. Dissertação de Mestrado - Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, 2024.https://hdl.handle.net/11449/25661133004030170P0porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2025-03-29T05:03:31Zoai:repositorio.unesp.br:11449/256611Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-03-29T05:03:31Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia
Using generative artificial intelligence in digital modeling of personalized implants for cranioplasty
title O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia
spellingShingle O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia
Martins, Michel Simões [UNESP]
Inteligência Artificial Generativa
Generative Artificial Intelligence
Implante Craniano
Modelagem Digital de Implantes
Cranioplastia
Reconstrução de Crânio
Prototipagem Rápida
Impressão 3D
Bioimpressão
Aprendizagem de Máquina
Reconstrução de Forma
Conclusão de Nuvem de Pontos
Cranial Implant
Digital Implant Modeling
Cranioplasty
Skull Reconstruction
Rapid Prototyping
3D Printing
Bioprinting
Machine Learning
Shape Reconstruction
Point Cloud Completion
title_short O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia
title_full O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia
title_fullStr O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia
title_full_unstemmed O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia
title_sort O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia
author Martins, Michel Simões [UNESP]
author_facet Martins, Michel Simões [UNESP]
author_role author
dc.contributor.none.fl_str_mv Guastaldi, Antonio Carlos [UNESP]
dc.contributor.author.fl_str_mv Martins, Michel Simões [UNESP]
dc.subject.por.fl_str_mv Inteligência Artificial Generativa
Generative Artificial Intelligence
Implante Craniano
Modelagem Digital de Implantes
Cranioplastia
Reconstrução de Crânio
Prototipagem Rápida
Impressão 3D
Bioimpressão
Aprendizagem de Máquina
Reconstrução de Forma
Conclusão de Nuvem de Pontos
Cranial Implant
Digital Implant Modeling
Cranioplasty
Skull Reconstruction
Rapid Prototyping
3D Printing
Bioprinting
Machine Learning
Shape Reconstruction
Point Cloud Completion
topic Inteligência Artificial Generativa
Generative Artificial Intelligence
Implante Craniano
Modelagem Digital de Implantes
Cranioplastia
Reconstrução de Crânio
Prototipagem Rápida
Impressão 3D
Bioimpressão
Aprendizagem de Máquina
Reconstrução de Forma
Conclusão de Nuvem de Pontos
Cranial Implant
Digital Implant Modeling
Cranioplasty
Skull Reconstruction
Rapid Prototyping
3D Printing
Bioprinting
Machine Learning
Shape Reconstruction
Point Cloud Completion
description A cranioplastia é um procedimento cirúrgico bastante conhecido na neurocirurgia cujo caráter reparatório visa a restaurar defeitos cranianos gerados por traumas, má-formação congênita e outras neurocirurgias como, por exemplo, a craniectomia. A restauração tem por finalidade garantir a proteção biomecânica dos tecidos moles subjacentes ao implante, normalizar a pressão intracraniana, restaurar a dinâmica normal do fluxo de líquido cefalorraquidiano, e reduzir as chances de complicações pós-operatórias de craniectomias. Os impactos da cranioplastia são benéficos ao paciente, tanto do ponto de vista neurológico, quanto psicossocial. Atualmente, a fabricação de implantes cranianos pode ser obtida através de um processo chamado de prototipagem rápida. Tal processo envolve a modelagem digital do implante em software CAD e sua impressão 3D em bioimpressora. Nos casos de cranioplastia após craniectomia, estudos apontam que o potencial de redução de riscos de complicações pós-operatórias ao paciente é maior quando a criação do implante craniano acontece por prototipagem rápida, devido a precisão e agilidade inerente ao processo em relação a processos convencionais de fabricação do implante. No entanto, essa precisão e agilidade nem sempre são garantidas pois são fundamentalmente dependentes tanto da qualidade e propriedades do biomaterial e impressora 3D utilizadas durante a bioimpressão, quanto da experiência e habilidade do desenhista CAD, e dos recursos de ferramentas internas ao software CAD que lhe serão disponíveis durante a modelagem digital do implante, visto que os recursos rápidos e semiautomáticos se tornam inaplicáveis conforme a complexidade do defeito craniano aumenta. Pensando nisso, a presente pesquisa se propôs a demonstrar como a modelagem digital de implantes cranianos pode ser tratada de maneira automatizada e orientada por dados, através do uso de inteligência artificial generativa. A modelagem digital do implante foi tratada como uma tarefa de conclusão de nuvem de pontos, na qual a subtração booleana entre a geração de saída e sua respectiva entrada resultou no modelo digital tridimensional do implante. Para o treinamento e avaliação da rede neural generativa autocodificadora convolucional foi necessário a construção de um conjunto de dados multiclassificado e balanceado, através de metodologias de amostragem híbrida e registro de imagens tridimensionais. Os resultados foram quantificados por métricas que medem a similaridade e dissimilaridade do modelo digital de implante na relação resultado-referência. Os resultados obtidos foram uma distância de Hausdorff média de 24,22 mm e um coeficiente de similaridade de Dice média de 0,726, ou seja, aproximadamente 73% de precisão. Como conclusão, esse trabalho aponta que o uso de inteligência artificial generativa na modelagem digital de implantes cranianos é uma abordagem promissora, e além de contribuir com a rapidez com que o implante bioimpresso estaria a disposição para a realização de uma cranioplastia precoce, também contribui com o alívio da complexidade, demanda de experiência, consumo de tempo em modelagens complexas, e altos custos relacionados ao licenciamento de uso de softwares CAD médicos. Espera-se que as contribuições deste projeto estimulem o surgimento de novas pesquisas na área, visando inovações tecnológicas ao processo de fabricação de implantes bioimpressos.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-16T21:48:11Z
2024-07-16T21:48:11Z
2024-04-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MARTINS, M. S. O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia. Dissertação de Mestrado - Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, 2024.
https://hdl.handle.net/11449/256611
33004030170P0
identifier_str_mv MARTINS, M. S. O uso de inteligência artificial generativa na modelagem digital de implantes personalizados para cranioplastia. Dissertação de Mestrado - Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, 2024.
33004030170P0
url https://hdl.handle.net/11449/256611
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854954855670480896