Reconfiguration of distribution networks with simultaneous allocation of distributed generation using the whale optimization algorithm

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Mahdavi, Elham
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/250251
Resumo: Due to the economic interest of the reduction of the power losses and the regulatory requirements regarding voltage levels in steady state, this study offers a computational methodology to assist in the optimization of the power losses and voltage profile in steady state through the distribution network reconfiguration (DNR) and distributed generations (DGs). The power flow execution and the methods of the sophisticated optimization are able to investigate the big combinative problems required to study DNR. The optimization procedure kind utilized in the distribution network is determined based on the size of the network. Approaches that are expensive in terms of computation or prohibitive include direct approaches, but approaches that have acceptable results with less computational expense include heuristic or metaheuristic approaches. In this research, the load flow that is implemented, is the backward-forward sweep method and we intend to use IEEE 33-bus, IEEE 69-bus, 136-bus, and 415-bus systems. Therefore, we consider the simulation of all the systems according to the network layout and proper placement of DGs in the network using the whale optimization algorithm (WOA). The objective function is to reduce power losses by the DNR and the optimal location and size of DG units, but the voltage profile also improves in this problem. Due to the nonlinear, nonconvex and large nature of the problem, the WOA is used to optimize the problem under MATLAB software. The results indicate that the WOA algorithm performs better in terms of power loss reduction and voltage profile improvement when compared with other metaheuristics shown in the chapter of the tests and results.
id UNSP_d6bd9fbf3bcfa168e1c3317bddd8669e
oai_identifier_str oai:repositorio.unesp.br:11449/250251
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling Reconfiguration of distribution networks with simultaneous allocation of distributed generation using the whale optimization algorithmReconfiguração de redes de distribuição com alocação simultânea de geração distribuída usando o algoritmo de otimização baleiaWhale optimization algorithmDistribution networkReconfigurationPower lossesDistributed generationMATLABAlgoritmo de otimização de baleiasRede de distribuiçãoReconfiguraçãoPerdas de potênciaGeração distribuídaDue to the economic interest of the reduction of the power losses and the regulatory requirements regarding voltage levels in steady state, this study offers a computational methodology to assist in the optimization of the power losses and voltage profile in steady state through the distribution network reconfiguration (DNR) and distributed generations (DGs). The power flow execution and the methods of the sophisticated optimization are able to investigate the big combinative problems required to study DNR. The optimization procedure kind utilized in the distribution network is determined based on the size of the network. Approaches that are expensive in terms of computation or prohibitive include direct approaches, but approaches that have acceptable results with less computational expense include heuristic or metaheuristic approaches. In this research, the load flow that is implemented, is the backward-forward sweep method and we intend to use IEEE 33-bus, IEEE 69-bus, 136-bus, and 415-bus systems. Therefore, we consider the simulation of all the systems according to the network layout and proper placement of DGs in the network using the whale optimization algorithm (WOA). The objective function is to reduce power losses by the DNR and the optimal location and size of DG units, but the voltage profile also improves in this problem. Due to the nonlinear, nonconvex and large nature of the problem, the WOA is used to optimize the problem under MATLAB software. The results indicate that the WOA algorithm performs better in terms of power loss reduction and voltage profile improvement when compared with other metaheuristics shown in the chapter of the tests and results.Devido ao interesse econômico da redução das perdas de potência e aos requisitos regulatórios referentes aos níveis de tensão em regime permanente, este trabalho propõe uma metodologia computacional para auxiliar na otimização das perdas de potência e perfil de tensão em regime permanente através da reconfiguração da rede de distribuição (RRD) e Gerações Distribuídas (GDs). A execução do fluxo de potência e os métodos de otimização sofisticados são capazes de investigar os grandes problemas combinatórias necessários para estudar o RRD. O tipo de procedimento de otimização utilizado na rede de distribuição é determinado com base no tamanho da rede. Abordagens que são caras em termos de computação ou proibitivas incluem abordagens diretas, mas abordagens que têm resultados aceitáveis com menor gasto computacional incluem abordagens heurísticas ou metaheurísticas. Nesta pesquisa, o fluxo de carga implementado é o método backward-forward e são usados os dados dos sistemas de IEEE 33 barras, IEEE 69 barras, 136 barras e 415 barras. Portanto, consideramos a simulação de todos os sistemas de acordo com o tipo de rede e o posicionamento adequado dos GDs na rede usando o algoritmo de otimização de baleias (AOB). A função objetivo é minimizar a perdas de potência pelo RRD e a localização e tamanho ideais das unidades GD, mas o perfil de tensão também melhora neste problema. Devido à natureza não linear, não convexa e grande porte do problema, o AOB é usado para otimizar o problema usando o software MATLAB. Os resultados indicam que o algoritmo AOB apresenta melhor desempenho em termos de redução de perdas de potência e melhora do perfil de tensão quando comparado com outras metaheurísticas mostradas no capítulo de testes e resultados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001Universidade Estadual Paulista (Unesp)Lázaro, Rubén Augusto Romero [UNESP]Possagnolo, Leonardo Henrique Faria Macedo [UNESP]Universidade Estadual Paulista (Unesp)Mahdavi, Elham2023-08-14T15:15:56Z2023-08-14T15:15:56Z2023-07-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/25025133004099080P0enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-05T17:59:28Zoai:repositorio.unesp.br:11449/250251Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-08-05T17:59:28Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Reconfiguration of distribution networks with simultaneous allocation of distributed generation using the whale optimization algorithm
Reconfiguração de redes de distribuição com alocação simultânea de geração distribuída usando o algoritmo de otimização baleia
title Reconfiguration of distribution networks with simultaneous allocation of distributed generation using the whale optimization algorithm
spellingShingle Reconfiguration of distribution networks with simultaneous allocation of distributed generation using the whale optimization algorithm
Mahdavi, Elham
Whale optimization algorithm
Distribution network
Reconfiguration
Power losses
Distributed generation
MATLAB
Algoritmo de otimização de baleias
Rede de distribuição
Reconfiguração
Perdas de potência
Geração distribuída
title_short Reconfiguration of distribution networks with simultaneous allocation of distributed generation using the whale optimization algorithm
title_full Reconfiguration of distribution networks with simultaneous allocation of distributed generation using the whale optimization algorithm
title_fullStr Reconfiguration of distribution networks with simultaneous allocation of distributed generation using the whale optimization algorithm
title_full_unstemmed Reconfiguration of distribution networks with simultaneous allocation of distributed generation using the whale optimization algorithm
title_sort Reconfiguration of distribution networks with simultaneous allocation of distributed generation using the whale optimization algorithm
author Mahdavi, Elham
author_facet Mahdavi, Elham
author_role author
dc.contributor.none.fl_str_mv Lázaro, Rubén Augusto Romero [UNESP]
Possagnolo, Leonardo Henrique Faria Macedo [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Mahdavi, Elham
dc.subject.por.fl_str_mv Whale optimization algorithm
Distribution network
Reconfiguration
Power losses
Distributed generation
MATLAB
Algoritmo de otimização de baleias
Rede de distribuição
Reconfiguração
Perdas de potência
Geração distribuída
topic Whale optimization algorithm
Distribution network
Reconfiguration
Power losses
Distributed generation
MATLAB
Algoritmo de otimização de baleias
Rede de distribuição
Reconfiguração
Perdas de potência
Geração distribuída
description Due to the economic interest of the reduction of the power losses and the regulatory requirements regarding voltage levels in steady state, this study offers a computational methodology to assist in the optimization of the power losses and voltage profile in steady state through the distribution network reconfiguration (DNR) and distributed generations (DGs). The power flow execution and the methods of the sophisticated optimization are able to investigate the big combinative problems required to study DNR. The optimization procedure kind utilized in the distribution network is determined based on the size of the network. Approaches that are expensive in terms of computation or prohibitive include direct approaches, but approaches that have acceptable results with less computational expense include heuristic or metaheuristic approaches. In this research, the load flow that is implemented, is the backward-forward sweep method and we intend to use IEEE 33-bus, IEEE 69-bus, 136-bus, and 415-bus systems. Therefore, we consider the simulation of all the systems according to the network layout and proper placement of DGs in the network using the whale optimization algorithm (WOA). The objective function is to reduce power losses by the DNR and the optimal location and size of DG units, but the voltage profile also improves in this problem. Due to the nonlinear, nonconvex and large nature of the problem, the WOA is used to optimize the problem under MATLAB software. The results indicate that the WOA algorithm performs better in terms of power loss reduction and voltage profile improvement when compared with other metaheuristics shown in the chapter of the tests and results.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-14T15:15:56Z
2023-08-14T15:15:56Z
2023-07-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/250251
33004099080P0
url http://hdl.handle.net/11449/250251
identifier_str_mv 33004099080P0
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854955097393463296