Reconhecimento de padrões em biossequências utilizando sistema imunológico artificial

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Liberato, Luiz Paulo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/215096
Resumo: Com o avanço nos estudos genômicos foi possível entender melhor a herança genética, a síntese de proteínas e as mutações que ocorrem nos seres vivos. Com o aumento na capacidade de sequenciamento do ADN (Ácido desoxirribonucleico), e seu armazenamento, torna-se possível estudos biológicos avançados. O crescimento dos dados agrega massa de conhecimento para profissionais da área de genética, no entanto, o processamento passa a ser dispendioso quando utilizados métodos determinísticos. Para garantir tempo hábil e maior precisão no processo de reconhecimento de padrões utiliza-se de métodos heurísticos, dado que métodos determinísticos inviabilizam a execução de grandes volumes de dados. Métodos heurísticos possuem a característica de buscar a melhor solução possível dentro do espaço de busca que é explorado. Dentre as heurísticas conhecidas tem-se o Sistema Imunológico Artificial (SIA) que se enquadra na categoria de métodos bioinspirados que simulam um comportamento biológico. No presente trabalho desenvolveu-se a implementação do CLONALG (Algoritmo de Seleção Clonal) da abordagem do SIA com o MMO (Modelo de Markov Oculto) como função de afinidade, afim de obter padrões estocásticos que representem informações genéticas com relevância biológica e um tempo computacional aceitável. Como resultado foi obtido um valor 50% mais relevante em termos de tempo de execução, quando comparado ao CLONALG com a função de afinidade de Hamming. Por se tratar de uma abordagem estocástica é possível armazenar os padrões com maior afinidade para processamentos futuros, e ajustes nos parâmetros do algoritmo podem ser feitos para melhorar ainda mais a qualidade dos padrões encontrados. Finalmente, também validou-se que o CLONALG com a implementação MMO foi capaz de reconhecer os mesmos padrões quando comparado a ferramentas similares.
id UNSP_d764186f9f8ea20b574bc7dbdbeca8f0
oai_identifier_str oai:repositorio.unesp.br:11449/215096
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling Reconhecimento de padrões em biossequências utilizando sistema imunológico artificialPattern recognition in biosequences using artificial immune systemBioinformáticaSistema imunológico artificialReconhecimento de padrõesBioinformaticsArtificial immune systemPattern recognitionCom o avanço nos estudos genômicos foi possível entender melhor a herança genética, a síntese de proteínas e as mutações que ocorrem nos seres vivos. Com o aumento na capacidade de sequenciamento do ADN (Ácido desoxirribonucleico), e seu armazenamento, torna-se possível estudos biológicos avançados. O crescimento dos dados agrega massa de conhecimento para profissionais da área de genética, no entanto, o processamento passa a ser dispendioso quando utilizados métodos determinísticos. Para garantir tempo hábil e maior precisão no processo de reconhecimento de padrões utiliza-se de métodos heurísticos, dado que métodos determinísticos inviabilizam a execução de grandes volumes de dados. Métodos heurísticos possuem a característica de buscar a melhor solução possível dentro do espaço de busca que é explorado. Dentre as heurísticas conhecidas tem-se o Sistema Imunológico Artificial (SIA) que se enquadra na categoria de métodos bioinspirados que simulam um comportamento biológico. No presente trabalho desenvolveu-se a implementação do CLONALG (Algoritmo de Seleção Clonal) da abordagem do SIA com o MMO (Modelo de Markov Oculto) como função de afinidade, afim de obter padrões estocásticos que representem informações genéticas com relevância biológica e um tempo computacional aceitável. Como resultado foi obtido um valor 50% mais relevante em termos de tempo de execução, quando comparado ao CLONALG com a função de afinidade de Hamming. Por se tratar de uma abordagem estocástica é possível armazenar os padrões com maior afinidade para processamentos futuros, e ajustes nos parâmetros do algoritmo podem ser feitos para melhorar ainda mais a qualidade dos padrões encontrados. Finalmente, também validou-se que o CLONALG com a implementação MMO foi capaz de reconhecer os mesmos padrões quando comparado a ferramentas similares.With the advance on genomics studies was possible to know better the genetic inheritance, protein synthesis and mutations that occurs in living beings. With the increase in the DNA sequencing capacity (Deoxyribonucleic acid), and its storage, advanced biological studies are possible. The growth of data adds mass of knowledge for professionals in the field of genetics, however, processing becomes expensive when using deterministic methods. To ensure timely and greater precision in the pattern recognition process, heuristic methods are used, since deterministic methods make it impossible to execute large volumes of data. Heuristic methods have the characteristic of seeking the best possible solution within the search space that is explored. Among the known heuristics is the Artificial Immune System (AIS), which falls under the category of bioinspired methods that simulate biological behavior. In this work, the CLONALG (Clonal Selection Algorithm) of the AIS approach was implemented with HMM (Hidden Markov Model) as an affinity function, in order to obtain stochastic patterns with biological relevance and an acceptable computational time. As a result, a 50% more relevant value was obtained in terms of execution time, when compared to CLONALG with the Hamming affinity function. As this is a stochastic approach, it is possible to store the patterns with greater affinity for future processing, adjustments in the algorithm parameters can be made to further improve the quality of the patterns found. Finally, it was also validated that CLONALG with the HMM implementation was able to recognize the same patterns when compared to similar tools.Universidade Estadual Paulista (Unesp)Zafalon, Geraldo Francisco Donegá [UNESP]Universidade Estadual Paulista (Unesp)Liberato, Luiz Paulo2021-11-12T16:28:24Z2021-11-12T16:28:24Z2021-09-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/21509633004153073P2porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-11-05T13:26:00Zoai:repositorio.unesp.br:11449/215096Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-05T13:26Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Reconhecimento de padrões em biossequências utilizando sistema imunológico artificial
Pattern recognition in biosequences using artificial immune system
title Reconhecimento de padrões em biossequências utilizando sistema imunológico artificial
spellingShingle Reconhecimento de padrões em biossequências utilizando sistema imunológico artificial
Liberato, Luiz Paulo
Bioinformática
Sistema imunológico artificial
Reconhecimento de padrões
Bioinformatics
Artificial immune system
Pattern recognition
title_short Reconhecimento de padrões em biossequências utilizando sistema imunológico artificial
title_full Reconhecimento de padrões em biossequências utilizando sistema imunológico artificial
title_fullStr Reconhecimento de padrões em biossequências utilizando sistema imunológico artificial
title_full_unstemmed Reconhecimento de padrões em biossequências utilizando sistema imunológico artificial
title_sort Reconhecimento de padrões em biossequências utilizando sistema imunológico artificial
author Liberato, Luiz Paulo
author_facet Liberato, Luiz Paulo
author_role author
dc.contributor.none.fl_str_mv Zafalon, Geraldo Francisco Donegá [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Liberato, Luiz Paulo
dc.subject.por.fl_str_mv Bioinformática
Sistema imunológico artificial
Reconhecimento de padrões
Bioinformatics
Artificial immune system
Pattern recognition
topic Bioinformática
Sistema imunológico artificial
Reconhecimento de padrões
Bioinformatics
Artificial immune system
Pattern recognition
description Com o avanço nos estudos genômicos foi possível entender melhor a herança genética, a síntese de proteínas e as mutações que ocorrem nos seres vivos. Com o aumento na capacidade de sequenciamento do ADN (Ácido desoxirribonucleico), e seu armazenamento, torna-se possível estudos biológicos avançados. O crescimento dos dados agrega massa de conhecimento para profissionais da área de genética, no entanto, o processamento passa a ser dispendioso quando utilizados métodos determinísticos. Para garantir tempo hábil e maior precisão no processo de reconhecimento de padrões utiliza-se de métodos heurísticos, dado que métodos determinísticos inviabilizam a execução de grandes volumes de dados. Métodos heurísticos possuem a característica de buscar a melhor solução possível dentro do espaço de busca que é explorado. Dentre as heurísticas conhecidas tem-se o Sistema Imunológico Artificial (SIA) que se enquadra na categoria de métodos bioinspirados que simulam um comportamento biológico. No presente trabalho desenvolveu-se a implementação do CLONALG (Algoritmo de Seleção Clonal) da abordagem do SIA com o MMO (Modelo de Markov Oculto) como função de afinidade, afim de obter padrões estocásticos que representem informações genéticas com relevância biológica e um tempo computacional aceitável. Como resultado foi obtido um valor 50% mais relevante em termos de tempo de execução, quando comparado ao CLONALG com a função de afinidade de Hamming. Por se tratar de uma abordagem estocástica é possível armazenar os padrões com maior afinidade para processamentos futuros, e ajustes nos parâmetros do algoritmo podem ser feitos para melhorar ainda mais a qualidade dos padrões encontrados. Finalmente, também validou-se que o CLONALG com a implementação MMO foi capaz de reconhecer os mesmos padrões quando comparado a ferramentas similares.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-12T16:28:24Z
2021-11-12T16:28:24Z
2021-09-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/215096
33004153073P2
url http://hdl.handle.net/11449/215096
identifier_str_mv 33004153073P2
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854954886788022272