Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/11449/261096 |
Resumo: | As the integration of solar photovoltaic (PV) power plants into electrical grids grows, it becomes critical to determine the maximum PV capacity that can be safely connected to distribution networks without compromising the grid operation and service quality. This thesis formulates an optimization problem to maximize the PV hosting capacity (HC) in a medium-voltage distribution feeder by allocating (siting and sizing) ground-mounted PV power plants, considering both the power factor and voltage-reactive power (Volt-VAr) control functions of their corresponding smart inverters (SIs). A simulation-optimization framework that integrates Python and OpenDSS software is proposed to determine the best number, location, and size of PV systems to be installed on a distribution feeder, as well as the best control set-points of the PV inverters. This thesis also quantifies the location-specific PV HC (PVHC) by connecting a single PV plant at a time (i.e., centralized allocation) at each candidate location and considering the maximum values of feeder bus voltages and thermal loadings through the conductors as performance metrics. Differential evolution (DE) and vortex search (VS) algorithms are used to solve the proposed optimization problem. The connection of one, two, and three PV power plants is tested in an Ecuadorian distribution feeder model. The results indicate that VS presents less variability in its solutions and a higher mean objective function value than DE, and installing two PV power plants with their SIs operating with the Volt-VAr control function produces the highest PVHC. |
| id |
UNSP_f6c4d336764d5fb87bab0d827cb72782 |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/261096 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
|
| spelling |
Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacityOtimização da alocação de usinas de fotovoltaicas e configurações de inversores inteligentes para maximizar a capacidade de hospedagem da rede de distribuiçãoDistribution networkDG allocationHosting capacityMetaheuristic algorithmPhotovoltaic systemSmart inverterAlgoritmo meta-heurísticoAlocação de geração distribuidaCapacidade de hospedagemInversor inteligenteRede de distribuiçãoUsina solar fotovoltaicaAs the integration of solar photovoltaic (PV) power plants into electrical grids grows, it becomes critical to determine the maximum PV capacity that can be safely connected to distribution networks without compromising the grid operation and service quality. This thesis formulates an optimization problem to maximize the PV hosting capacity (HC) in a medium-voltage distribution feeder by allocating (siting and sizing) ground-mounted PV power plants, considering both the power factor and voltage-reactive power (Volt-VAr) control functions of their corresponding smart inverters (SIs). A simulation-optimization framework that integrates Python and OpenDSS software is proposed to determine the best number, location, and size of PV systems to be installed on a distribution feeder, as well as the best control set-points of the PV inverters. This thesis also quantifies the location-specific PV HC (PVHC) by connecting a single PV plant at a time (i.e., centralized allocation) at each candidate location and considering the maximum values of feeder bus voltages and thermal loadings through the conductors as performance metrics. Differential evolution (DE) and vortex search (VS) algorithms are used to solve the proposed optimization problem. The connection of one, two, and three PV power plants is tested in an Ecuadorian distribution feeder model. The results indicate that VS presents less variability in its solutions and a higher mean objective function value than DE, and installing two PV power plants with their SIs operating with the Volt-VAr control function produces the highest PVHC.À medida que cresce a integração de usinas solares fotovoltaicas (FVs) nas redes de energia elétrica, torna-se fundamental quantificar a máxima capacidade de geração FV que pode conectar-se de forma segura na rede de distribuição sem comprometer a operação da rede nem a qualidade do serviço. Nesta tese, é formulado um problema de otimização para maximizar a capacidade de hospedagem (hosting capacity) FV em um alimentador de distribuição de média tensão, alocando (posicionando e dimensionando) usinas solares FV de solo, considerando as funções de controle fator de potência e tensão-potência reativa (Volt-VAr) dos inversores inteligentes correspondentes. Propõe-se um framework de otimização baseado em simulação que integra os software Python e OpenDSS para determinar o melhor número, local e capacidade de usinas FVs a serem instaladas num alimentador de distribuição e determinar os melhores pontos de ajuste das funções de controle dos respectivos inversores das usinas FVs. Esta tese também quantifica a capacidade de hospedagem FV especifica do local, conectando uma única usina FV por vez (isto é alocação centralizada) em cada local candidato e considerando como métricas de desempenho os valores máximos de tensão nas barras e carregamento dos condutores. Os algoritmos de evolução diferencial (ED) e vortex search (VS) foram usados para resolver o problema de otimização proposto. A conexão de uma, duas e três usinas FVs é testada num modelo de um alimentador de distribuição equatoriano. Os resultados indicaram que o VS apresenta menos variabilidade em suas soluções e um maior valor médio da função objetivo do que a ED, e instalar duas usinas FVs com seus inversores inteligentes operando com a função de controle Volt-VAr produz a máxima capacidade de hospedagem.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 88887.817660/2023-00CAPES: 001Universidade Estadual Paulista (Unesp)Leite, Jônatas Boás [UNESP]Universidade Estadual Paulista (Unesp)Soares, João André PintoJaramillo Leon, Brian Daniel [UNESP]2025-02-18T19:01:45Z2025-02-18T19:01:45Z2025-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfJARAMILLO LEÓN, Brian Daniel. Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network's hosting capacity. 2025. 70 f. Tese (Doutorado em Engenharia Elétrica) – Faculdade de Engenharia, Universidade Estadual Paulista - Unesp, Ilha Solteira, 2025.https://hdl.handle.net/11449/26109633004099080P0enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2025-06-02T18:40:36Zoai:repositorio.unesp.br:11449/261096Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-06-02T18:40:36Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity Otimização da alocação de usinas de fotovoltaicas e configurações de inversores inteligentes para maximizar a capacidade de hospedagem da rede de distribuição |
| title |
Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity |
| spellingShingle |
Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity Jaramillo Leon, Brian Daniel [UNESP] Distribution network DG allocation Hosting capacity Metaheuristic algorithm Photovoltaic system Smart inverter Algoritmo meta-heurístico Alocação de geração distribuida Capacidade de hospedagem Inversor inteligente Rede de distribuição Usina solar fotovoltaica |
| title_short |
Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity |
| title_full |
Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity |
| title_fullStr |
Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity |
| title_full_unstemmed |
Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity |
| title_sort |
Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity |
| author |
Jaramillo Leon, Brian Daniel [UNESP] |
| author_facet |
Jaramillo Leon, Brian Daniel [UNESP] |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Leite, Jônatas Boás [UNESP] Universidade Estadual Paulista (Unesp) Soares, João André Pinto |
| dc.contributor.author.fl_str_mv |
Jaramillo Leon, Brian Daniel [UNESP] |
| dc.subject.por.fl_str_mv |
Distribution network DG allocation Hosting capacity Metaheuristic algorithm Photovoltaic system Smart inverter Algoritmo meta-heurístico Alocação de geração distribuida Capacidade de hospedagem Inversor inteligente Rede de distribuição Usina solar fotovoltaica |
| topic |
Distribution network DG allocation Hosting capacity Metaheuristic algorithm Photovoltaic system Smart inverter Algoritmo meta-heurístico Alocação de geração distribuida Capacidade de hospedagem Inversor inteligente Rede de distribuição Usina solar fotovoltaica |
| description |
As the integration of solar photovoltaic (PV) power plants into electrical grids grows, it becomes critical to determine the maximum PV capacity that can be safely connected to distribution networks without compromising the grid operation and service quality. This thesis formulates an optimization problem to maximize the PV hosting capacity (HC) in a medium-voltage distribution feeder by allocating (siting and sizing) ground-mounted PV power plants, considering both the power factor and voltage-reactive power (Volt-VAr) control functions of their corresponding smart inverters (SIs). A simulation-optimization framework that integrates Python and OpenDSS software is proposed to determine the best number, location, and size of PV systems to be installed on a distribution feeder, as well as the best control set-points of the PV inverters. This thesis also quantifies the location-specific PV HC (PVHC) by connecting a single PV plant at a time (i.e., centralized allocation) at each candidate location and considering the maximum values of feeder bus voltages and thermal loadings through the conductors as performance metrics. Differential evolution (DE) and vortex search (VS) algorithms are used to solve the proposed optimization problem. The connection of one, two, and three PV power plants is tested in an Ecuadorian distribution feeder model. The results indicate that VS presents less variability in its solutions and a higher mean objective function value than DE, and installing two PV power plants with their SIs operating with the Volt-VAr control function produces the highest PVHC. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-02-18T19:01:45Z 2025-02-18T19:01:45Z 2025-01-31 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
JARAMILLO LEÓN, Brian Daniel. Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network's hosting capacity. 2025. 70 f. Tese (Doutorado em Engenharia Elétrica) – Faculdade de Engenharia, Universidade Estadual Paulista - Unesp, Ilha Solteira, 2025. https://hdl.handle.net/11449/261096 33004099080P0 |
| identifier_str_mv |
JARAMILLO LEÓN, Brian Daniel. Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network's hosting capacity. 2025. 70 f. Tese (Doutorado em Engenharia Elétrica) – Faculdade de Engenharia, Universidade Estadual Paulista - Unesp, Ilha Solteira, 2025. 33004099080P0 |
| url |
https://hdl.handle.net/11449/261096 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
| publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1854954939179073536 |