Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Jaramillo Leon, Brian Daniel [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/11449/261096
Resumo: As the integration of solar photovoltaic (PV) power plants into electrical grids grows, it becomes critical to determine the maximum PV capacity that can be safely connected to distribution networks without compromising the grid operation and service quality. This thesis formulates an optimization problem to maximize the PV hosting capacity (HC) in a medium-voltage distribution feeder by allocating (siting and sizing) ground-mounted PV power plants, considering both the power factor and voltage-reactive power (Volt-VAr) control functions of their corresponding smart inverters (SIs). A simulation-optimization framework that integrates Python and OpenDSS software is proposed to determine the best number, location, and size of PV systems to be installed on a distribution feeder, as well as the best control set-points of the PV inverters. This thesis also quantifies the location-specific PV HC (PVHC) by connecting a single PV plant at a time (i.e., centralized allocation) at each candidate location and considering the maximum values of feeder bus voltages and thermal loadings through the conductors as performance metrics. Differential evolution (DE) and vortex search (VS) algorithms are used to solve the proposed optimization problem. The connection of one, two, and three PV power plants is tested in an Ecuadorian distribution feeder model. The results indicate that VS presents less variability in its solutions and a higher mean objective function value than DE, and installing two PV power plants with their SIs operating with the Volt-VAr control function produces the highest PVHC.
id UNSP_f6c4d336764d5fb87bab0d827cb72782
oai_identifier_str oai:repositorio.unesp.br:11449/261096
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacityOtimização da alocação de usinas de fotovoltaicas e configurações de inversores inteligentes para maximizar a capacidade de hospedagem da rede de distribuiçãoDistribution networkDG allocationHosting capacityMetaheuristic algorithmPhotovoltaic systemSmart inverterAlgoritmo meta-heurísticoAlocação de geração distribuidaCapacidade de hospedagemInversor inteligenteRede de distribuiçãoUsina solar fotovoltaicaAs the integration of solar photovoltaic (PV) power plants into electrical grids grows, it becomes critical to determine the maximum PV capacity that can be safely connected to distribution networks without compromising the grid operation and service quality. This thesis formulates an optimization problem to maximize the PV hosting capacity (HC) in a medium-voltage distribution feeder by allocating (siting and sizing) ground-mounted PV power plants, considering both the power factor and voltage-reactive power (Volt-VAr) control functions of their corresponding smart inverters (SIs). A simulation-optimization framework that integrates Python and OpenDSS software is proposed to determine the best number, location, and size of PV systems to be installed on a distribution feeder, as well as the best control set-points of the PV inverters. This thesis also quantifies the location-specific PV HC (PVHC) by connecting a single PV plant at a time (i.e., centralized allocation) at each candidate location and considering the maximum values of feeder bus voltages and thermal loadings through the conductors as performance metrics. Differential evolution (DE) and vortex search (VS) algorithms are used to solve the proposed optimization problem. The connection of one, two, and three PV power plants is tested in an Ecuadorian distribution feeder model. The results indicate that VS presents less variability in its solutions and a higher mean objective function value than DE, and installing two PV power plants with their SIs operating with the Volt-VAr control function produces the highest PVHC.À medida que cresce a integração de usinas solares fotovoltaicas (FVs) nas redes de energia elétrica, torna-se fundamental quantificar a máxima capacidade de geração FV que pode conectar-se de forma segura na rede de distribuição sem comprometer a operação da rede nem a qualidade do serviço. Nesta tese, é formulado um problema de otimização para maximizar a capacidade de hospedagem (hosting capacity) FV em um alimentador de distribuição de média tensão, alocando (posicionando e dimensionando) usinas solares FV de solo, considerando as funções de controle fator de potência e tensão-potência reativa (Volt-VAr) dos inversores inteligentes correspondentes. Propõe-se um framework de otimização baseado em simulação que integra os software Python e OpenDSS para determinar o melhor número, local e capacidade de usinas FVs a serem instaladas num alimentador de distribuição e determinar os melhores pontos de ajuste das funções de controle dos respectivos inversores das usinas FVs. Esta tese também quantifica a capacidade de hospedagem FV especifica do local, conectando uma única usina FV por vez (isto é alocação centralizada) em cada local candidato e considerando como métricas de desempenho os valores máximos de tensão nas barras e carregamento dos condutores. Os algoritmos de evolução diferencial (ED) e vortex search (VS) foram usados para resolver o problema de otimização proposto. A conexão de uma, duas e três usinas FVs é testada num modelo de um alimentador de distribuição equatoriano. Os resultados indicaram que o VS apresenta menos variabilidade em suas soluções e um maior valor médio da função objetivo do que a ED, e instalar duas usinas FVs com seus inversores inteligentes operando com a função de controle Volt-VAr produz a máxima capacidade de hospedagem.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 88887.817660/2023-00CAPES: 001Universidade Estadual Paulista (Unesp)Leite, Jônatas Boás [UNESP]Universidade Estadual Paulista (Unesp)Soares, João André PintoJaramillo Leon, Brian Daniel [UNESP]2025-02-18T19:01:45Z2025-02-18T19:01:45Z2025-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfJARAMILLO LEÓN, Brian Daniel. Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network's hosting capacity. 2025. 70 f. Tese (Doutorado em Engenharia Elétrica) – Faculdade de Engenharia, Universidade Estadual Paulista - Unesp, Ilha Solteira, 2025.https://hdl.handle.net/11449/26109633004099080P0enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2025-06-02T18:40:36Zoai:repositorio.unesp.br:11449/261096Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-06-02T18:40:36Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity
Otimização da alocação de usinas de fotovoltaicas e configurações de inversores inteligentes para maximizar a capacidade de hospedagem da rede de distribuição
title Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity
spellingShingle Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity
Jaramillo Leon, Brian Daniel [UNESP]
Distribution network
DG allocation
Hosting capacity
Metaheuristic algorithm
Photovoltaic system
Smart inverter
Algoritmo meta-heurístico
Alocação de geração distribuida
Capacidade de hospedagem
Inversor inteligente
Rede de distribuição
Usina solar fotovoltaica
title_short Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity
title_full Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity
title_fullStr Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity
title_full_unstemmed Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity
title_sort Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network’s hosting capacity
author Jaramillo Leon, Brian Daniel [UNESP]
author_facet Jaramillo Leon, Brian Daniel [UNESP]
author_role author
dc.contributor.none.fl_str_mv Leite, Jônatas Boás [UNESP]
Universidade Estadual Paulista (Unesp)
Soares, João André Pinto
dc.contributor.author.fl_str_mv Jaramillo Leon, Brian Daniel [UNESP]
dc.subject.por.fl_str_mv Distribution network
DG allocation
Hosting capacity
Metaheuristic algorithm
Photovoltaic system
Smart inverter
Algoritmo meta-heurístico
Alocação de geração distribuida
Capacidade de hospedagem
Inversor inteligente
Rede de distribuição
Usina solar fotovoltaica
topic Distribution network
DG allocation
Hosting capacity
Metaheuristic algorithm
Photovoltaic system
Smart inverter
Algoritmo meta-heurístico
Alocação de geração distribuida
Capacidade de hospedagem
Inversor inteligente
Rede de distribuição
Usina solar fotovoltaica
description As the integration of solar photovoltaic (PV) power plants into electrical grids grows, it becomes critical to determine the maximum PV capacity that can be safely connected to distribution networks without compromising the grid operation and service quality. This thesis formulates an optimization problem to maximize the PV hosting capacity (HC) in a medium-voltage distribution feeder by allocating (siting and sizing) ground-mounted PV power plants, considering both the power factor and voltage-reactive power (Volt-VAr) control functions of their corresponding smart inverters (SIs). A simulation-optimization framework that integrates Python and OpenDSS software is proposed to determine the best number, location, and size of PV systems to be installed on a distribution feeder, as well as the best control set-points of the PV inverters. This thesis also quantifies the location-specific PV HC (PVHC) by connecting a single PV plant at a time (i.e., centralized allocation) at each candidate location and considering the maximum values of feeder bus voltages and thermal loadings through the conductors as performance metrics. Differential evolution (DE) and vortex search (VS) algorithms are used to solve the proposed optimization problem. The connection of one, two, and three PV power plants is tested in an Ecuadorian distribution feeder model. The results indicate that VS presents less variability in its solutions and a higher mean objective function value than DE, and installing two PV power plants with their SIs operating with the Volt-VAr control function produces the highest PVHC.
publishDate 2025
dc.date.none.fl_str_mv 2025-02-18T19:01:45Z
2025-02-18T19:01:45Z
2025-01-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv JARAMILLO LEÓN, Brian Daniel. Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network's hosting capacity. 2025. 70 f. Tese (Doutorado em Engenharia Elétrica) – Faculdade de Engenharia, Universidade Estadual Paulista - Unesp, Ilha Solteira, 2025.
https://hdl.handle.net/11449/261096
33004099080P0
identifier_str_mv JARAMILLO LEÓN, Brian Daniel. Optimization of photovoltaic power plant allocation and smart inverter settings to maximize the distribution network's hosting capacity. 2025. 70 f. Tese (Doutorado em Engenharia Elétrica) – Faculdade de Engenharia, Universidade Estadual Paulista - Unesp, Ilha Solteira, 2025.
33004099080P0
url https://hdl.handle.net/11449/261096
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854954939179073536