Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Saraiva, Gustavo Francisco Rosalin lattes
Orientador(a): Souza, Gustavo Maia lattes
Banca de defesa: Pereira, Danillo Roberto lattes, Vieira, Luiz Gonzaga Esteves lattes, Costa, Ernane José Xavier lattes, Von Zuben, Fernando José lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Oeste Paulista
Programa de Pós-Graduação: Doutorado em Agronomia
Departamento: Doutorado em Agronomia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://bdtd.unoeste.br:8080/jspui/handle/jspui/1087
Resumo: Plants are complex organisms with dynamic processes that, due to their sessile way of life, are influenced by environmental conditions at all times. Plants can accurately perceive and respond to different environmental stimuli intelligently, but this requires a complex and efficient signaling system. Electrical signaling in plants has been known for a long time, but has recently gained prominence with the understanding of the physiological processes of plants. The objective of this thesis was to test the following hypotheses: temporal series of data obtained from electrical signaling of plants have non-random information, with dynamic and oscillatory pattern, such dynamics being affected by environmental stimuli and that there are specific patterns in responses to stimuli. In a controlled environment, stressful environmental stimuli were applied in soybean plants, and the electrical signaling data were collected before and after the application of the stimulus. The time series obtained were analyzed using statistical and computational tools to determine Frequency Spectrum (FFT), Autocorrelation of Values and Approximate Entropy (ApEn). In order to verify the existence of patterns in the series, classification algorithms from the area of machine learning were used. The analysis of the time series showed that the electrical signals collected from plants presented oscillatory dynamics with frequency distribution pattern in power law. The results allow to differentiate with great efficiency series collected before and after the application of the stimuli. The PSD and autocorrelation analyzes showed a great difference in the dynamics of the electric signals before and after the application of the stimuli. The ApEn analysis showed that there was a decrease in the signal complexity after the application of the stimuli. The classification algorithms reached significant values in the accuracy of pattern detection and classification of the time series, showing that there are mathematical patterns in the different electrical responses of the plants. It is concluded that the time series of bioelectrical signals of plants contain discriminant information. The signals have oscillatory dynamics, having their properties altered by environmental stimuli. There are still mathematical patterns built into plant responses to specific stimuli.
id UOES_a5168298a9a55c48280dde747a623e4d
oai_identifier_str oai:bdtd.unoeste.br:jspui/1087
network_acronym_str UOES
network_name_str Biblioteca Digital de Teses e Dissertações da UNOESTE
repository_id_str
spelling Souza, Gustavo Maiahttp://lattes.cnpq.br/3664441705741783Pereira, Danillo Robertohttp://lattes.cnpq.br/0122307432250869Vieira, Luiz Gonzaga Esteveshttp://lattes.cnpq.br/298816495523999Costa, Ernane José Xavierhttp://lattes.cnpq.br/7534841168255892Von Zuben, Fernando Joséhttp://lattes.cnpq.br/175689577740418736833918805http://lattes.cnpq.br/9488050850575972Saraiva, Gustavo Francisco Rosalin2018-07-27T17:57:40Z2017-03-31Saraiva, Gustavo Francisco Rosalin. Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas. 2017. 83f. Tese (Doutorado em Agronomia) - Universidade do Oeste Paulista, Presidente Prudente, 2017.http://bdtd.unoeste.br:8080/jspui/handle/jspui/1087Plants are complex organisms with dynamic processes that, due to their sessile way of life, are influenced by environmental conditions at all times. Plants can accurately perceive and respond to different environmental stimuli intelligently, but this requires a complex and efficient signaling system. Electrical signaling in plants has been known for a long time, but has recently gained prominence with the understanding of the physiological processes of plants. The objective of this thesis was to test the following hypotheses: temporal series of data obtained from electrical signaling of plants have non-random information, with dynamic and oscillatory pattern, such dynamics being affected by environmental stimuli and that there are specific patterns in responses to stimuli. In a controlled environment, stressful environmental stimuli were applied in soybean plants, and the electrical signaling data were collected before and after the application of the stimulus. The time series obtained were analyzed using statistical and computational tools to determine Frequency Spectrum (FFT), Autocorrelation of Values and Approximate Entropy (ApEn). In order to verify the existence of patterns in the series, classification algorithms from the area of machine learning were used. The analysis of the time series showed that the electrical signals collected from plants presented oscillatory dynamics with frequency distribution pattern in power law. The results allow to differentiate with great efficiency series collected before and after the application of the stimuli. The PSD and autocorrelation analyzes showed a great difference in the dynamics of the electric signals before and after the application of the stimuli. The ApEn analysis showed that there was a decrease in the signal complexity after the application of the stimuli. The classification algorithms reached significant values in the accuracy of pattern detection and classification of the time series, showing that there are mathematical patterns in the different electrical responses of the plants. It is concluded that the time series of bioelectrical signals of plants contain discriminant information. The signals have oscillatory dynamics, having their properties altered by environmental stimuli. There are still mathematical patterns built into plant responses to specific stimuli.As plantas são organismos complexos com processos dinâmicos que, devido ao seu modo séssil de vida, sofrem influência das condições ambientais todo o tempo. Plantas podem percebem e responder com precisão a diferentes estímulos ambientais de forma inteligente, mas para isso se faz necessário um complexo e eficiente sistema de sinalização. A sinalização elétrica em plantas já é conhecida há muito tempo, mas vem ganhando destaque recentemente com seu entendimento em relação aos processos fisiológicos das plantas. O objetivo desta tese foi testar as seguintes hipóteses: séries temporais de dados obtidos da sinalização elétrica de plantas possuem informação não aleatória, com padrão dinâmico e oscilatório, sendo tal dinâmica afetada por estímulos ambientais e que há padrões específicos nas respostas a estímulos. Em ambiente controlado, foram aplicados estímulos ambientais estressantes em plantas de soja, e captados os dados de sinalização elétrica antes e após a aplicação dos mesmos. As séries temporais obtidas foram analisadas utilizando ferramentas estatísticas e computacionais para se determinar o Espectro de Frequências (FFT), Autocorrelação dos valores e Entropia Aproximada (ApEn). Para se verificar a existência de padrões nas séries, foram utilizados algoritmos de classificação da área de aprendizado de máquina. A análise das séries temporais mostrou que os sinais elétricos coletados de plantas apresentaram dinâmica oscilatória com padrão de distribuição de frequências em lei de potência. Os resultados permitem diferenciar com grande eficácia séries coletadas antes e após a aplicação dos estímulos. As análises de PSD e autocorrelação mostraram grande diferença na dinâmica dos sinais elétricos antes e após a aplicação dos estímulos. A análise de ApEn mostrou haver diminuição da complexidade do sinal após a aplicação dos estímulos. Os algoritmos de classificação alcançaram valores significativos na acurácia de detecção de padrões e classificação das séries temporais, mostrando haver padrões matemáticos nas diferentes respostas elétricas das plantas. Conclui-se que as séries temporais de sinais bioelétricos de plantas possuem informação discriminante. Os sinais possuem dinâmica oscilatória, tendo suas propriedades alteradas por estímulos ambientais. Há ainda padrões matemáticos embutidos nas respostas da planta a estímulos específicos.Submitted by Michele Mologni (mologni@unoeste.br) on 2018-07-27T17:57:40Z No. of bitstreams: 1 Gustavo Francisco Rosalin Saraiva.pdf: 5041218 bytes, checksum: 30127a7816b12d3bd7e57182e6229bc2 (MD5)Made available in DSpace on 2018-07-27T17:57:40Z (GMT). No. of bitstreams: 1 Gustavo Francisco Rosalin Saraiva.pdf: 5041218 bytes, checksum: 30127a7816b12d3bd7e57182e6229bc2 (MD5) Previous issue date: 2017-03-31application/pdfhttp://bdtd.unoeste.br:8080/jspui/retrieve/2683/Gustavo%20Francisco%20Rosalin%20Saraiva.pdf.jpgporUniversidade do Oeste PaulistaDoutorado em AgronomiaUNOESTEBrasilDoutorado em AgronomiaAlgoritmos de classificação, Complexidade, Eletrofisiologia Vegetal, Entropia Aproximada.Classification algorithms, Complexity, Plant Electrophysiology, Approximate Entropy.CIENCIAS AGRARIAS::AGRONOMIAAnálise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externasTemporal analysis of electrical signaling in soybean plants subjected to different external disturbancesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis63419071533829402885005006006341907153382940288-3091138714907603907info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UNOESTEinstname:Universidade do Oeste Paulista (UNOESTE)instacron:UNOESTETHUMBNAILGustavo Francisco Rosalin Saraiva.pdf.jpgGustavo Francisco Rosalin Saraiva.pdf.jpgimage/jpeg2156http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1087/3/Gustavo+Francisco+Rosalin+Saraiva.pdf.jpg658644fa4315f92afb433b0f56234055MD53ORIGINALGustavo Francisco Rosalin Saraiva.pdfGustavo Francisco Rosalin Saraiva.pdfapplication/pdf5041218http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1087/2/Gustavo+Francisco+Rosalin+Saraiva.pdf30127a7816b12d3bd7e57182e6229bc2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82067http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1087/1/license.txt47745281809acb27fb322a97f2d9cb88MD51jspui/10872018-07-28 01:00:10.475oai:bdtd.unoeste.br:jspui/1087TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTyBFWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobm9tZSBkbyBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgZG8gT2VzdGUgUGF1bGlzdGEg4oCTIFVOT0VTVEUsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVOT0VTVEUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVU5PRVNURSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbyBpbmZyaW5nZSwgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVU5PRVNURSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNhc28gYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEgdGVuaGEgc2lkbyByZXN1bHRhZG8gZGUgdW0gcGF0cm9jw61uaW8gb3UgYXBvaW8gZGUgdW1hIGFnw6puY2lhIGRlIGZvbWVudG8gb3Ugb3V0cm8gb3JnYW5pc21vLCBxdWUgbsOjbyBzZWphIGEgVU5PRVNURSwgdm9jw6ogZGVjbGFyYSBxdWUgcmVzcGVpdG91IHRvZG9zIGUgcXVhaXNxdWVyIGRpcmVpdG9zIGRlIHJldmlzw6NvLCBjb21vIHRhbWLDqW0sIGFzIGRlbWFpcyBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcG9yIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVU5PRVNURSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCgpFIHBvciBzZXJlbSB2ZXJkYWRlaXJhcyBhcyBpbmZvcm1hw6fDtWVzIGFjaW1hIGNpdGFkYXMsIGNvbmNlZG8gYSBsaWNlbsOnYSBkZSBkaXN0cmlidWnDp8OjbyBuw6NvIGV4Y2x1c2l2YSBwYXJhIGEgVU5PRVNURS4KBiblioteca Digital de Teses e Dissertaçõeshttp://bdtd.unoeste.br:8080/jspui/PUBhttp://bdtd.unoeste.br:8080/oai/requestbdtd@unoeste.bropendoar:2018-07-28T04:00:10Biblioteca Digital de Teses e Dissertações da UNOESTE - Universidade do Oeste Paulista (UNOESTE)false
dc.title.por.fl_str_mv Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas
dc.title.alternative.eng.fl_str_mv Temporal analysis of electrical signaling in soybean plants subjected to different external disturbances
title Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas
spellingShingle Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas
Saraiva, Gustavo Francisco Rosalin
Algoritmos de classificação, Complexidade, Eletrofisiologia Vegetal, Entropia Aproximada.
Classification algorithms, Complexity, Plant Electrophysiology, Approximate Entropy.
CIENCIAS AGRARIAS::AGRONOMIA
title_short Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas
title_full Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas
title_fullStr Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas
title_full_unstemmed Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas
title_sort Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas
author Saraiva, Gustavo Francisco Rosalin
author_facet Saraiva, Gustavo Francisco Rosalin
author_role author
dc.contributor.advisor1.fl_str_mv Souza, Gustavo Maia
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3664441705741783
dc.contributor.referee1.fl_str_mv Pereira, Danillo Roberto
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0122307432250869
dc.contributor.referee2.fl_str_mv Vieira, Luiz Gonzaga Esteves
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/298816495523999
dc.contributor.referee3.fl_str_mv Costa, Ernane José Xavier
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/7534841168255892
dc.contributor.referee4.fl_str_mv Von Zuben, Fernando José
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/1756895777404187
dc.contributor.authorID.fl_str_mv 36833918805
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9488050850575972
dc.contributor.author.fl_str_mv Saraiva, Gustavo Francisco Rosalin
contributor_str_mv Souza, Gustavo Maia
Pereira, Danillo Roberto
Vieira, Luiz Gonzaga Esteves
Costa, Ernane José Xavier
Von Zuben, Fernando José
dc.subject.por.fl_str_mv Algoritmos de classificação, Complexidade, Eletrofisiologia Vegetal, Entropia Aproximada.
topic Algoritmos de classificação, Complexidade, Eletrofisiologia Vegetal, Entropia Aproximada.
Classification algorithms, Complexity, Plant Electrophysiology, Approximate Entropy.
CIENCIAS AGRARIAS::AGRONOMIA
dc.subject.eng.fl_str_mv Classification algorithms, Complexity, Plant Electrophysiology, Approximate Entropy.
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::AGRONOMIA
description Plants are complex organisms with dynamic processes that, due to their sessile way of life, are influenced by environmental conditions at all times. Plants can accurately perceive and respond to different environmental stimuli intelligently, but this requires a complex and efficient signaling system. Electrical signaling in plants has been known for a long time, but has recently gained prominence with the understanding of the physiological processes of plants. The objective of this thesis was to test the following hypotheses: temporal series of data obtained from electrical signaling of plants have non-random information, with dynamic and oscillatory pattern, such dynamics being affected by environmental stimuli and that there are specific patterns in responses to stimuli. In a controlled environment, stressful environmental stimuli were applied in soybean plants, and the electrical signaling data were collected before and after the application of the stimulus. The time series obtained were analyzed using statistical and computational tools to determine Frequency Spectrum (FFT), Autocorrelation of Values and Approximate Entropy (ApEn). In order to verify the existence of patterns in the series, classification algorithms from the area of machine learning were used. The analysis of the time series showed that the electrical signals collected from plants presented oscillatory dynamics with frequency distribution pattern in power law. The results allow to differentiate with great efficiency series collected before and after the application of the stimuli. The PSD and autocorrelation analyzes showed a great difference in the dynamics of the electric signals before and after the application of the stimuli. The ApEn analysis showed that there was a decrease in the signal complexity after the application of the stimuli. The classification algorithms reached significant values in the accuracy of pattern detection and classification of the time series, showing that there are mathematical patterns in the different electrical responses of the plants. It is concluded that the time series of bioelectrical signals of plants contain discriminant information. The signals have oscillatory dynamics, having their properties altered by environmental stimuli. There are still mathematical patterns built into plant responses to specific stimuli.
publishDate 2017
dc.date.issued.fl_str_mv 2017-03-31
dc.date.accessioned.fl_str_mv 2018-07-27T17:57:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Saraiva, Gustavo Francisco Rosalin. Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas. 2017. 83f. Tese (Doutorado em Agronomia) - Universidade do Oeste Paulista, Presidente Prudente, 2017.
dc.identifier.uri.fl_str_mv http://bdtd.unoeste.br:8080/jspui/handle/jspui/1087
identifier_str_mv Saraiva, Gustavo Francisco Rosalin. Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas. 2017. 83f. Tese (Doutorado em Agronomia) - Universidade do Oeste Paulista, Presidente Prudente, 2017.
url http://bdtd.unoeste.br:8080/jspui/handle/jspui/1087
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6341907153382940288
dc.relation.confidence.fl_str_mv 500
500
600
dc.relation.department.fl_str_mv 6341907153382940288
dc.relation.cnpq.fl_str_mv -3091138714907603907
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Oeste Paulista
dc.publisher.program.fl_str_mv Doutorado em Agronomia
dc.publisher.initials.fl_str_mv UNOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Doutorado em Agronomia
publisher.none.fl_str_mv Universidade do Oeste Paulista
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNOESTE
instname:Universidade do Oeste Paulista (UNOESTE)
instacron:UNOESTE
instname_str Universidade do Oeste Paulista (UNOESTE)
instacron_str UNOESTE
institution UNOESTE
reponame_str Biblioteca Digital de Teses e Dissertações da UNOESTE
collection Biblioteca Digital de Teses e Dissertações da UNOESTE
bitstream.url.fl_str_mv http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1087/3/Gustavo+Francisco+Rosalin+Saraiva.pdf.jpg
http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1087/2/Gustavo+Francisco+Rosalin+Saraiva.pdf
http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1087/1/license.txt
bitstream.checksum.fl_str_mv 658644fa4315f92afb433b0f56234055
30127a7816b12d3bd7e57182e6229bc2
47745281809acb27fb322a97f2d9cb88
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNOESTE - Universidade do Oeste Paulista (UNOESTE)
repository.mail.fl_str_mv bdtd@unoeste.br
_version_ 1850079079129153536