Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade do Oeste Paulista
|
| Programa de Pós-Graduação: |
Mestrado em Meio Ambiente e Desenvolvimento Regional
|
| Departamento: |
Mestrado em Meio Ambiente e Desenvolvimento Regional
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://bdtd.unoeste.br:8080/jspui/handle/jspui/1268 |
Resumo: | The master's thesis, presented in this document, was written in a model of scientific article. The final document of the dissertation was organized into three sections. The first section with the general contextualization of the research, promoted by the Coordination for the Improvement of Higher Education Personnel (CAPES) and developed in the Graduate Program in Environment and Regional Development (PPGMADRE) of the University of Western São Paulo (UNOESTE). The second section is composed of a manuscript, in which presents an approach of validation of vulnerability map to erosion elaborated by different methods of inference. The third section presents priority areas for forest recovery in hydrographic basins through Multicriteria Analysis in GIS environment. For the second section we adopted a hydrographic basin and considered the following criteria: geomorphology, pedology, slope, drainage density and land cover. Among the methods tested: Weighted Linear Combination (CLP) and three Fuzzy operators: algebraic sum, algebraic product and gamma, varying the exponent "γ" between the values 0.4; 0.6 and 0.8. The weights of the criteria were defined based on the Hierarchical Analytical Process. The validation of the maps occurred using 1902 points, of which 951 erosion points were in the area, defined based on images from Google Earth Pro, and 951 points without erosion, randomly generated in QGIS 3.8. The logistic regression model was used to compare the performance of each map by pointing out the areas with the highest and lowest degree of vulnerability. The best modeling was achieved with the Fuzzy gamma operator when parameterized with γ = 0.6. Although CLP is the recurrent approach in environmental studies involving geographic inference, our results show that other operators can produce results closer to those found with the reality observed in the field. For the third section we worked with relevant criteria for the determination of priority areas, such as: drainage network, distance from highways, distance from urban areas, fragments of vegetation, and vulnerability to erosion. The weights of each criterion were obtained from the Hierarchical Analytical Process (AHP). We tested two methods for creating the synthesis map: CLP (Weighted Linear Combination) and Fuzzy Gamma operator. As a result we obtained two scenarios; the first with the PLC method where we prioritized areas with vegetation fragments and high drainage density, and the second with the Gamma method, which prioritized vulnerable areas of the basin. We conclude that the proposed integration model satisfies the identification of areas for forest recovery in watersheds, and that different scenarios can be constructed |
| id |
UOES_ec0bc0ce5a2c178a73ddb347556d4003 |
|---|---|
| oai_identifier_str |
oai:bdtd.unoeste.br:jspui/1268 |
| network_acronym_str |
UOES |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UNOESTE |
| repository_id_str |
|
| spelling |
Ramos, Ana Paula Marqueshttp://lattes.cnpq.br/9006947238035954Alves, Marcelo Rodrigohttp://lattes.cnpq.br/8257691552745291Osco, Lucas Pradohttp://lattes.cnpq.br/7723347042259816Ramos, Ana Paula Alveshttp://lattes.cnpq.br/9006947238035954Silva, Paulo Antônio dahttp://lattes.cnpq.br/6213603526706261Moryia, Érika A. S.http://lattes.cnpq.br/587772080706681607220356919http://lattes.cnpq.br/7368714810258680MAFRA, Renata Cristina2020-07-10T17:04:59Z2020-03-06MAFRA, Renata Cristina. Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério. 2020. 53 f. Dissertação (Mestrado em Meio Ambiente e Desenvolvimento Regional) - Universidade do Oeste Paulista, Presidente Prudente, 2020.http://bdtd.unoeste.br:8080/jspui/handle/jspui/1268The master's thesis, presented in this document, was written in a model of scientific article. The final document of the dissertation was organized into three sections. The first section with the general contextualization of the research, promoted by the Coordination for the Improvement of Higher Education Personnel (CAPES) and developed in the Graduate Program in Environment and Regional Development (PPGMADRE) of the University of Western São Paulo (UNOESTE). The second section is composed of a manuscript, in which presents an approach of validation of vulnerability map to erosion elaborated by different methods of inference. The third section presents priority areas for forest recovery in hydrographic basins through Multicriteria Analysis in GIS environment. For the second section we adopted a hydrographic basin and considered the following criteria: geomorphology, pedology, slope, drainage density and land cover. Among the methods tested: Weighted Linear Combination (CLP) and three Fuzzy operators: algebraic sum, algebraic product and gamma, varying the exponent "γ" between the values 0.4; 0.6 and 0.8. The weights of the criteria were defined based on the Hierarchical Analytical Process. The validation of the maps occurred using 1902 points, of which 951 erosion points were in the area, defined based on images from Google Earth Pro, and 951 points without erosion, randomly generated in QGIS 3.8. The logistic regression model was used to compare the performance of each map by pointing out the areas with the highest and lowest degree of vulnerability. The best modeling was achieved with the Fuzzy gamma operator when parameterized with γ = 0.6. Although CLP is the recurrent approach in environmental studies involving geographic inference, our results show that other operators can produce results closer to those found with the reality observed in the field. For the third section we worked with relevant criteria for the determination of priority areas, such as: drainage network, distance from highways, distance from urban areas, fragments of vegetation, and vulnerability to erosion. The weights of each criterion were obtained from the Hierarchical Analytical Process (AHP). We tested two methods for creating the synthesis map: CLP (Weighted Linear Combination) and Fuzzy Gamma operator. As a result we obtained two scenarios; the first with the PLC method where we prioritized areas with vegetation fragments and high drainage density, and the second with the Gamma method, which prioritized vulnerable areas of the basin. We conclude that the proposed integration model satisfies the identification of areas for forest recovery in watersheds, and that different scenarios can be constructedA dissertação de mestrado, apresentada neste documento, foi escrita em modelo de artigo científico. O documento final da dissertação foi organizado em três seções. A primeira seção com a contextualização geral da pesquisa, fomentada pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e desenvolvida no Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional (PPGMADRE) da Universidade do Oeste Paulista (UNOESTE). A segunda seção é composta por um manuscrito, no qual apresenta uma abordagem de validação de mapa de vulnerabilidade à erosão elaborado por diferentes métodos de inferência. A terceira seção apresenta áreas prioritárias para a recuperação florestal em bacias hidrográficas por meio de Análise Multicritério em ambiente SIG. Para a segunda seção adotamos uma bacia hidrográfica e consideramos os seguintes critérios: geomorfologia, pedologia, declividade, densidade de drenagem e cobertura da terra. Dentre os métodos testados: Combinação Linear Ponderada (CLP) e três operadores Fuzzy: soma algébrica, produto algébrico e gamma, variando o expoente “γ” entre os valores 0,4; 0,6 e 0,8. Os pesos dos critérios foram definidos com base no Processo Analítico Hierárquico. A validação dos mapas ocorreu usando 1902 pontos, sendo 951 pontos de erosão na área, definidos com base em imagens do Google Earth Pro, e 951 pontos sem erosão, gerados aleatoriamente no QGIS 3.8. O modelo de regressão logística foi usado parar comparar o desempenho de cada mapa ao apontar as áreas com maior e menor grau de vulnerabilidade. A melhor modelagem foi alcançada com o operador Fuzzy gamma quando parametrizado com γ = 0,6. Embora o CLP seja a abordagem recorrente em estudos ambientais envolvendo inferência geográfica, nossos resultados demostram que outros operadores podem produzir resultados mais próximos aos encontrados com a realidade observada em campo.Para a terceira seção trabalhamos com critérios relevantes para a determinação de áreas prioritárias, como: rede de drenagem, distância de rodovias, distância de áreas urbanas, fragmentos de vegetação, e vulnerabilidade a erosão. Os pesos de cada critério foram obtidos a partir do Processo Analítico Hierárquico (AHP). Testamos dois métodos para criação do mapa síntese: CLP (Combinação Linear Ponderada) e operador Fuzzy Gamma. Como resultado obtivemos dois cenários; o primeiro com o método CLP onde priorizamos áreas com fragmentos de vegetação e alta densidade de drenagem, e o segundo com o método Gamma, que priorizou áreas vulneráveis da bacia. Concluímos que o modelo de integração proposto satisfaz a identificação de áreas para a recuperação de florestas em bacias hidrográficas, e que diferentes cenários podem ser construídos.Submitted by Ivy Rodrigues (ivy@unoeste.br) on 2020-07-10T17:04:59Z No. of bitstreams: 2 RENATA MAFRA.pdf: 3098923 bytes, checksum: bd2b3653b04f0e564274bb659abef020 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2020-07-10T17:04:59Z (GMT). No. of bitstreams: 2 RENATA MAFRA.pdf: 3098923 bytes, checksum: bd2b3653b04f0e564274bb659abef020 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2020-03-06Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://bdtd.unoeste.br:8080/jspui/retrieve/3778/RENATA%20MAFRA.pdf.jpgporUniversidade do Oeste PaulistaMestrado em Meio Ambiente e Desenvolvimento RegionalUNOESTEBrasilMestrado em Meio Ambiente e Desenvolvimento Regionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessInferência geográficaAnálise multicritérioImpacto ambientalRecuperação florestalÁreas prioritáriasGeographical inferenceMulticriteria analysisEnvironmental impactForest recuperationPriority areasOUTROS::CIENCIASDefinição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritérioDefinition of priority areas for forest recovery in river basins after multicriteria analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis54681960544754885750050060060054681960544754885762099577914943238252075167498588264571reponame:Biblioteca Digital de Teses e Dissertações da UNOESTEinstname:Universidade do Oeste Paulista (UNOESTE)instacron:UNOESTETHUMBNAILRENATA MAFRA.pdf.jpgRENATA MAFRA.pdf.jpgimage/jpeg2170http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/7/RENATA+MAFRA.pdf.jpge06bfd5d794f1a1138a77e6529e81107MD57TEXTRENATA MAFRA.pdf.txtRENATA MAFRA.pdf.txttext/plain92422http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/6/RENATA+MAFRA.pdf.txt153aa1ae1e004f70b4c0f14afaf6fd55MD56ORIGINALRENATA MAFRA.pdfRENATA MAFRA.pdfapplication/pdf3098923http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/5/RENATA+MAFRA.pdfbd2b3653b04f0e564274bb659abef020MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82067http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/1/license.txt47745281809acb27fb322a97f2d9cb88MD51jspui/12682020-07-11 01:00:11.433oai:bdtd.unoeste.br:jspui/1268TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTyBFWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobm9tZSBkbyBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgZG8gT2VzdGUgUGF1bGlzdGEg4oCTIFVOT0VTVEUsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVOT0VTVEUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVU5PRVNURSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbyBpbmZyaW5nZSwgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVU5PRVNURSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNhc28gYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEgdGVuaGEgc2lkbyByZXN1bHRhZG8gZGUgdW0gcGF0cm9jw61uaW8gb3UgYXBvaW8gZGUgdW1hIGFnw6puY2lhIGRlIGZvbWVudG8gb3Ugb3V0cm8gb3JnYW5pc21vLCBxdWUgbsOjbyBzZWphIGEgVU5PRVNURSwgdm9jw6ogZGVjbGFyYSBxdWUgcmVzcGVpdG91IHRvZG9zIGUgcXVhaXNxdWVyIGRpcmVpdG9zIGRlIHJldmlzw6NvLCBjb21vIHRhbWLDqW0sIGFzIGRlbWFpcyBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcG9yIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVU5PRVNURSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCgpFIHBvciBzZXJlbSB2ZXJkYWRlaXJhcyBhcyBpbmZvcm1hw6fDtWVzIGFjaW1hIGNpdGFkYXMsIGNvbmNlZG8gYSBsaWNlbsOnYSBkZSBkaXN0cmlidWnDp8OjbyBuw6NvIGV4Y2x1c2l2YSBwYXJhIGEgVU5PRVNURS4KBiblioteca Digital de Teses e Dissertaçõeshttp://bdtd.unoeste.br:8080/jspui/PUBhttp://bdtd.unoeste.br:8080/oai/requestbdtd@unoeste.bropendoar:2020-07-11T04:00:11Biblioteca Digital de Teses e Dissertações da UNOESTE - Universidade do Oeste Paulista (UNOESTE)false |
| dc.title.por.fl_str_mv |
Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério |
| dc.title.alternative.eng.fl_str_mv |
Definition of priority areas for forest recovery in river basins after multicriteria analysis |
| title |
Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério |
| spellingShingle |
Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério MAFRA, Renata Cristina Inferência geográfica Análise multicritério Impacto ambiental Recuperação florestal Áreas prioritárias Geographical inference Multicriteria analysis Environmental impact Forest recuperation Priority areas OUTROS::CIENCIAS |
| title_short |
Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério |
| title_full |
Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério |
| title_fullStr |
Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério |
| title_full_unstemmed |
Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério |
| title_sort |
Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério |
| author |
MAFRA, Renata Cristina |
| author_facet |
MAFRA, Renata Cristina |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Ramos, Ana Paula Marques |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9006947238035954 |
| dc.contributor.advisor-co1.fl_str_mv |
Alves, Marcelo Rodrigo |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/8257691552745291 |
| dc.contributor.advisor-co2.fl_str_mv |
Osco, Lucas Prado |
| dc.contributor.advisor-co2Lattes.fl_str_mv |
http://lattes.cnpq.br/7723347042259816 |
| dc.contributor.referee1.fl_str_mv |
Ramos, Ana Paula Alves |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/9006947238035954 |
| dc.contributor.referee2.fl_str_mv |
Silva, Paulo Antônio da |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/6213603526706261 |
| dc.contributor.referee3.fl_str_mv |
Moryia, Érika A. S. |
| dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/5877720807066816 |
| dc.contributor.authorID.fl_str_mv |
07220356919 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7368714810258680 |
| dc.contributor.author.fl_str_mv |
MAFRA, Renata Cristina |
| contributor_str_mv |
Ramos, Ana Paula Marques Alves, Marcelo Rodrigo Osco, Lucas Prado Ramos, Ana Paula Alves Silva, Paulo Antônio da Moryia, Érika A. S. |
| dc.subject.por.fl_str_mv |
Inferência geográfica Análise multicritério Impacto ambiental Recuperação florestal Áreas prioritárias |
| topic |
Inferência geográfica Análise multicritério Impacto ambiental Recuperação florestal Áreas prioritárias Geographical inference Multicriteria analysis Environmental impact Forest recuperation Priority areas OUTROS::CIENCIAS |
| dc.subject.eng.fl_str_mv |
Geographical inference Multicriteria analysis Environmental impact Forest recuperation Priority areas |
| dc.subject.cnpq.fl_str_mv |
OUTROS::CIENCIAS |
| description |
The master's thesis, presented in this document, was written in a model of scientific article. The final document of the dissertation was organized into three sections. The first section with the general contextualization of the research, promoted by the Coordination for the Improvement of Higher Education Personnel (CAPES) and developed in the Graduate Program in Environment and Regional Development (PPGMADRE) of the University of Western São Paulo (UNOESTE). The second section is composed of a manuscript, in which presents an approach of validation of vulnerability map to erosion elaborated by different methods of inference. The third section presents priority areas for forest recovery in hydrographic basins through Multicriteria Analysis in GIS environment. For the second section we adopted a hydrographic basin and considered the following criteria: geomorphology, pedology, slope, drainage density and land cover. Among the methods tested: Weighted Linear Combination (CLP) and three Fuzzy operators: algebraic sum, algebraic product and gamma, varying the exponent "γ" between the values 0.4; 0.6 and 0.8. The weights of the criteria were defined based on the Hierarchical Analytical Process. The validation of the maps occurred using 1902 points, of which 951 erosion points were in the area, defined based on images from Google Earth Pro, and 951 points without erosion, randomly generated in QGIS 3.8. The logistic regression model was used to compare the performance of each map by pointing out the areas with the highest and lowest degree of vulnerability. The best modeling was achieved with the Fuzzy gamma operator when parameterized with γ = 0.6. Although CLP is the recurrent approach in environmental studies involving geographic inference, our results show that other operators can produce results closer to those found with the reality observed in the field. For the third section we worked with relevant criteria for the determination of priority areas, such as: drainage network, distance from highways, distance from urban areas, fragments of vegetation, and vulnerability to erosion. The weights of each criterion were obtained from the Hierarchical Analytical Process (AHP). We tested two methods for creating the synthesis map: CLP (Weighted Linear Combination) and Fuzzy Gamma operator. As a result we obtained two scenarios; the first with the PLC method where we prioritized areas with vegetation fragments and high drainage density, and the second with the Gamma method, which prioritized vulnerable areas of the basin. We conclude that the proposed integration model satisfies the identification of areas for forest recovery in watersheds, and that different scenarios can be constructed |
| publishDate |
2020 |
| dc.date.accessioned.fl_str_mv |
2020-07-10T17:04:59Z |
| dc.date.issued.fl_str_mv |
2020-03-06 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MAFRA, Renata Cristina. Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério. 2020. 53 f. Dissertação (Mestrado em Meio Ambiente e Desenvolvimento Regional) - Universidade do Oeste Paulista, Presidente Prudente, 2020. |
| dc.identifier.uri.fl_str_mv |
http://bdtd.unoeste.br:8080/jspui/handle/jspui/1268 |
| identifier_str_mv |
MAFRA, Renata Cristina. Definição de áreas prioritárias à recuperação florestal em bacias hidrográficas a partir de análise multicritério. 2020. 53 f. Dissertação (Mestrado em Meio Ambiente e Desenvolvimento Regional) - Universidade do Oeste Paulista, Presidente Prudente, 2020. |
| url |
http://bdtd.unoeste.br:8080/jspui/handle/jspui/1268 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
546819605447548857 |
| dc.relation.confidence.fl_str_mv |
500 500 600 600 |
| dc.relation.department.fl_str_mv |
546819605447548857 |
| dc.relation.cnpq.fl_str_mv |
6209957791494323825 |
| dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade do Oeste Paulista |
| dc.publisher.program.fl_str_mv |
Mestrado em Meio Ambiente e Desenvolvimento Regional |
| dc.publisher.initials.fl_str_mv |
UNOESTE |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Mestrado em Meio Ambiente e Desenvolvimento Regional |
| publisher.none.fl_str_mv |
Universidade do Oeste Paulista |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UNOESTE instname:Universidade do Oeste Paulista (UNOESTE) instacron:UNOESTE |
| instname_str |
Universidade do Oeste Paulista (UNOESTE) |
| instacron_str |
UNOESTE |
| institution |
UNOESTE |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UNOESTE |
| collection |
Biblioteca Digital de Teses e Dissertações da UNOESTE |
| bitstream.url.fl_str_mv |
http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/7/RENATA+MAFRA.pdf.jpg http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/6/RENATA+MAFRA.pdf.txt http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/5/RENATA+MAFRA.pdf http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/2/license_url http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/3/license_text http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/4/license_rdf http://bdtd.unoeste.br:8080/tede/bitstream/jspui/1268/1/license.txt |
| bitstream.checksum.fl_str_mv |
e06bfd5d794f1a1138a77e6529e81107 153aa1ae1e004f70b4c0f14afaf6fd55 bd2b3653b04f0e564274bb659abef020 321f3992dd3875151d8801b773ab32ed d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 47745281809acb27fb322a97f2d9cb88 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UNOESTE - Universidade do Oeste Paulista (UNOESTE) |
| repository.mail.fl_str_mv |
bdtd@unoeste.br |
| _version_ |
1850079081013444608 |