Produção de bioetanol e biometano a partir da biomassa de spirulina sp.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Rempel, Alan
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade de Passo Fundo
Faculdade de Engenharia e Arquitetura – FEAR
Brasil
UPF
Programa de Pós-Graduação em Engenharia Civil e Ambiental
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.upf.br/handle/123456789/2619
Resumo: The high demand for renewable and more sustainable sources of fuel that can replace the current energy matrix based on oil has led to the search for new sources of biomass, among which the algal biomass stands out. Microalgae have advantages over other raw materials because they do not need arable land for their cultivation, not competing with food production, besides helping to fix atmospheric carbon dioxide. The production of bioethanol from microalgal biomass has been reported, but the efficiency of this production process is still low, and there is a need for optimization of the production stages and cost reduction, which can be accomplished through the study of pre-treatments biomass and immobilization of enzymes used in hydrolysis, as well as the use of residues generated to obtain other biofuels, such as biomethane, contributing to increase the economic viability of the process as a whole. The objective was to produce bioethanol from Spirulina sp. LEB 52 and to use waste from the production of bioethanol in the production of biomethane. The microalga was cultivated in open tanks of 10 L using Zarrouk 20% medium, obtaining a biomass with 55% of carbohydrates, which was submitted to different pre-treatments for cellular rupture by physical methods, aiming to study which would be the most efficient in the release of intracellular polysaccharides. Afterwards, they were hydrolyzed by commercial amylolytic enzymes (alpha-amylase and amyloglucosidase), which were previously characterized for optimum ranges of pH and temperature of action. The hydrolysis of the algal biomass was carried out after pretreatment, using liquid enzymatic extracts and immobilized in polyurethane. The enzymes were immobilized separately and joined together in the support. Afterwards, enzymatic saccharification tests were performed using the free enzymes, with subsequent alcoholic fermentation. In alcoholic fermentation, the initial concentration of reducing sugars in the must and the supplementation of the hydrolyzate with nutrients were studied. The residues from saccharification and the fermentation process were subsequently used for the generation of biomethane. The best pre-treatment for cell disruption was freezing / thawing. In the characterization of the enzymes for optimum pH and temperature, both enzymes had the best results at 50 ºC and pH 5.5. With the non-immobilized enzymes results of near-100% biomass hydrolysis efficiency were obtained using 1% (v/v) of each of the enzymes. With the immobilized biocatalysts, the hydrolysis efficiencies were 83% using 1% (m/v) support containing the immobilized enzymes together. The fermentations presented efficiencies of bioethanol production around 83% without addition of nutrients to the must and with less hydrolyzate addition in the preparation of the inoculum, obtaining 23 g / L of ethanol. Ethanol production residues had a high bioethanol production potential of about 422 LN (kgSVad-1). Thus, it is possible to make use of these residues, thus giving more profitability and viability in the production process, thus providing a cycle closure, from microalgae cultivation to bioethanol production and ending with the use of residues in production of biomethane, thus adding greater viability and sustainability to the process.
id UPF_2c5f60a7a20663c1a0ea1922c55bc69b
oai_identifier_str oai:repositorio.upf.br:123456789/2619
network_acronym_str UPF
network_name_str Repositório Institucional da UPF
repository_id_str
spelling Produção de bioetanol e biometano a partir da biomassa de spirulina sp.Production of bioethanol and biomethane from spirulina sp.AlgaBiomassaBiocombustíveisCombustíveisENGENHARIAS::ENGENHARIA CIVILThe high demand for renewable and more sustainable sources of fuel that can replace the current energy matrix based on oil has led to the search for new sources of biomass, among which the algal biomass stands out. Microalgae have advantages over other raw materials because they do not need arable land for their cultivation, not competing with food production, besides helping to fix atmospheric carbon dioxide. The production of bioethanol from microalgal biomass has been reported, but the efficiency of this production process is still low, and there is a need for optimization of the production stages and cost reduction, which can be accomplished through the study of pre-treatments biomass and immobilization of enzymes used in hydrolysis, as well as the use of residues generated to obtain other biofuels, such as biomethane, contributing to increase the economic viability of the process as a whole. The objective was to produce bioethanol from Spirulina sp. LEB 52 and to use waste from the production of bioethanol in the production of biomethane. The microalga was cultivated in open tanks of 10 L using Zarrouk 20% medium, obtaining a biomass with 55% of carbohydrates, which was submitted to different pre-treatments for cellular rupture by physical methods, aiming to study which would be the most efficient in the release of intracellular polysaccharides. Afterwards, they were hydrolyzed by commercial amylolytic enzymes (alpha-amylase and amyloglucosidase), which were previously characterized for optimum ranges of pH and temperature of action. The hydrolysis of the algal biomass was carried out after pretreatment, using liquid enzymatic extracts and immobilized in polyurethane. The enzymes were immobilized separately and joined together in the support. Afterwards, enzymatic saccharification tests were performed using the free enzymes, with subsequent alcoholic fermentation. In alcoholic fermentation, the initial concentration of reducing sugars in the must and the supplementation of the hydrolyzate with nutrients were studied. The residues from saccharification and the fermentation process were subsequently used for the generation of biomethane. The best pre-treatment for cell disruption was freezing / thawing. In the characterization of the enzymes for optimum pH and temperature, both enzymes had the best results at 50 ºC and pH 5.5. With the non-immobilized enzymes results of near-100% biomass hydrolysis efficiency were obtained using 1% (v/v) of each of the enzymes. With the immobilized biocatalysts, the hydrolysis efficiencies were 83% using 1% (m/v) support containing the immobilized enzymes together. The fermentations presented efficiencies of bioethanol production around 83% without addition of nutrients to the must and with less hydrolyzate addition in the preparation of the inoculum, obtaining 23 g / L of ethanol. Ethanol production residues had a high bioethanol production potential of about 422 LN (kgSVad-1). Thus, it is possible to make use of these residues, thus giving more profitability and viability in the production process, thus providing a cycle closure, from microalgae cultivation to bioethanol production and ending with the use of residues in production of biomethane, thus adding greater viability and sustainability to the process.A elevada demanda por fontes de combustíveis renováveis e mais sustentáveis, que possam substituir a matriz energética atual, baseada no petróleo, tem levado à busca por novas fontes de biomassa, dentre as quais destaca-se a biomassa algal. As microalgas apresentam vantagens sobre outras matérias-primas por não necessitarem de terras aráveis para o seu cultivo, não competindo com a produção de alimentos, além de auxiliarem na fixação do gás carbônico atmosférico. A produção de bioetanol a partir de biomassa microalgal tem sido relatada, porém a eficiência deste processo de produção ainda é baixa, havendo a necessidade de otimização das etapas de produção e redução de custos, o que pode ser realizado através do estudo de pré-tratamentos da biomassa e imobilização de enzimas usadas na hidrólise, além da utilização dos resíduos gerados para a obtenção de outros biocombustíveis, como o biometano, contribuindo para o aumento da viabilidade econômica do processo como um todo. Objetivou-se produzir bioetanol a partir da biomassa de Spirulina sp. LEB 52 e utilizar os resíduos da produção do bioetanol na produção de biometano. A microalga foi cultivada em tanques abertos de 10 L utilizando meio Zarrouk 20%, obtendo-se uma biomassa com 55% de carboidratos, a qual foi submetida a diferentes pré-tratamentos para ruptura celular por métodos físicos, visando estudar qual seria o mais eficiente na liberação dos polissacarídeos intracelulares. Após, estes foram hidrolisados por enzimas amilolíticas comerciais (alfa-amilase e amiloglicosidase), as quais foram previamente caracterizadas quanto as faixas ótimas de pH e temperatura de ação. A hidrólise da biomassa algal foi realizada após o pré-tratamento, utilizando-se extratos enzimáticos líquidos e imobilizados em poliuretano. As enzimas foram imobilizadas separadas e em conjunto no suporte. Após, realizou-se ensaios de sacarificação enzimática utilizando-se as enzimas livres, com posterior fermentação alcoólica. Na fermentação alcoólica, estudou-se a concentração inicial de açúcares redutores no mosto e a suplementação do hidrolisado com nutrientes. Os resíduos da sacarificação e do processo fermentativo foram posteriormente utilizados para a geração de biometano. O melhor pré-tratamento para realizar a ruptura celular foi o de congelamento/descongelamento. Na caracterização das enzimas quanto ao pH e temperatura ótimos, ambas enzimas apresentaram os melhores resultados na temperatura de 50 ºC e pH 5,5. Com as enzimas não imobilizadas obtiveram-se resultados de eficiência hidrólise da biomassa próximos a 100% utilizando 1% (v/v) de cada uma das enzimas. Com os biocatalisadores imobilizados, as eficiências de hidrólise foram de 83% utilizando 1% (m/v) de suporte contendo as enzimas imobilizadas de forma conjunta. As fermentações apresentaram eficiências de produção de bioetanol em torno de 83% sem adição de nutrientes ao mosto e com menor adição de hidrolisado no preparo do inóculo, obtendo-se 23 g/L de etanol. Os resíduos da produção de etanol apresentaram elevado potencial de produção de biometano cerca de 422 LN (kgSVad-1). Sendo assim, é possível realizar o aproveitamento destes resíduos, dando assim mais rentabilidade e viabilidade no processo produtivo, propiciando assim um fechamento de ciclo, que vai desde o cultivo da microalga, passando pela produção de bioetanol e finalizando com o uso dos resíduos na produção de biometano, agregando assim maior viabilidade e sustentabilidade ao processo.Universidade de Passo FundoFaculdade de Engenharia e Arquitetura – FEARBrasilUPFPrograma de Pós-Graduação em Engenharia Civil e AmbientalColla, Luciane Mariahttp://lattes.cnpq.br/4804304036455640http://lattes.cnpq.br/4786694107508722Treichel, HelenRempel, Alan2025-05-07T14:28:25Z2018-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfREMPEL, Alan. Produção de bioetanol e biometano a partir da biomassa de spirulina sp. 2018. 86 f. Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2018.https://repositorio.upf.br/handle/123456789/2619porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UPFinstname:Universidade de Passo Fundo (UPF)instacron:UPF2025-10-23T12:42:51Zoai:repositorio.upf.br:123456789/2619Repositório InstitucionalPRIhttp://repositorio.upf.br/oai/requestjucelei@upf.br||biblio@upf.bropendoar:16102025-10-23T12:42:51Repositório Institucional da UPF - Universidade de Passo Fundo (UPF)false
dc.title.none.fl_str_mv Produção de bioetanol e biometano a partir da biomassa de spirulina sp.
Production of bioethanol and biomethane from spirulina sp.
title Produção de bioetanol e biometano a partir da biomassa de spirulina sp.
spellingShingle Produção de bioetanol e biometano a partir da biomassa de spirulina sp.
Rempel, Alan
Alga
Biomassa
Biocombustíveis
Combustíveis
ENGENHARIAS::ENGENHARIA CIVIL
title_short Produção de bioetanol e biometano a partir da biomassa de spirulina sp.
title_full Produção de bioetanol e biometano a partir da biomassa de spirulina sp.
title_fullStr Produção de bioetanol e biometano a partir da biomassa de spirulina sp.
title_full_unstemmed Produção de bioetanol e biometano a partir da biomassa de spirulina sp.
title_sort Produção de bioetanol e biometano a partir da biomassa de spirulina sp.
author Rempel, Alan
author_facet Rempel, Alan
author_role author
dc.contributor.none.fl_str_mv Colla, Luciane Maria
http://lattes.cnpq.br/4804304036455640
http://lattes.cnpq.br/4786694107508722
Treichel, Helen
dc.contributor.author.fl_str_mv Rempel, Alan
dc.subject.por.fl_str_mv Alga
Biomassa
Biocombustíveis
Combustíveis
ENGENHARIAS::ENGENHARIA CIVIL
topic Alga
Biomassa
Biocombustíveis
Combustíveis
ENGENHARIAS::ENGENHARIA CIVIL
description The high demand for renewable and more sustainable sources of fuel that can replace the current energy matrix based on oil has led to the search for new sources of biomass, among which the algal biomass stands out. Microalgae have advantages over other raw materials because they do not need arable land for their cultivation, not competing with food production, besides helping to fix atmospheric carbon dioxide. The production of bioethanol from microalgal biomass has been reported, but the efficiency of this production process is still low, and there is a need for optimization of the production stages and cost reduction, which can be accomplished through the study of pre-treatments biomass and immobilization of enzymes used in hydrolysis, as well as the use of residues generated to obtain other biofuels, such as biomethane, contributing to increase the economic viability of the process as a whole. The objective was to produce bioethanol from Spirulina sp. LEB 52 and to use waste from the production of bioethanol in the production of biomethane. The microalga was cultivated in open tanks of 10 L using Zarrouk 20% medium, obtaining a biomass with 55% of carbohydrates, which was submitted to different pre-treatments for cellular rupture by physical methods, aiming to study which would be the most efficient in the release of intracellular polysaccharides. Afterwards, they were hydrolyzed by commercial amylolytic enzymes (alpha-amylase and amyloglucosidase), which were previously characterized for optimum ranges of pH and temperature of action. The hydrolysis of the algal biomass was carried out after pretreatment, using liquid enzymatic extracts and immobilized in polyurethane. The enzymes were immobilized separately and joined together in the support. Afterwards, enzymatic saccharification tests were performed using the free enzymes, with subsequent alcoholic fermentation. In alcoholic fermentation, the initial concentration of reducing sugars in the must and the supplementation of the hydrolyzate with nutrients were studied. The residues from saccharification and the fermentation process were subsequently used for the generation of biomethane. The best pre-treatment for cell disruption was freezing / thawing. In the characterization of the enzymes for optimum pH and temperature, both enzymes had the best results at 50 ºC and pH 5.5. With the non-immobilized enzymes results of near-100% biomass hydrolysis efficiency were obtained using 1% (v/v) of each of the enzymes. With the immobilized biocatalysts, the hydrolysis efficiencies were 83% using 1% (m/v) support containing the immobilized enzymes together. The fermentations presented efficiencies of bioethanol production around 83% without addition of nutrients to the must and with less hydrolyzate addition in the preparation of the inoculum, obtaining 23 g / L of ethanol. Ethanol production residues had a high bioethanol production potential of about 422 LN (kgSVad-1). Thus, it is possible to make use of these residues, thus giving more profitability and viability in the production process, thus providing a cycle closure, from microalgae cultivation to bioethanol production and ending with the use of residues in production of biomethane, thus adding greater viability and sustainability to the process.
publishDate 2018
dc.date.none.fl_str_mv 2018-04-02
2025-05-07T14:28:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv REMPEL, Alan. Produção de bioetanol e biometano a partir da biomassa de spirulina sp. 2018. 86 f. Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2018.
https://repositorio.upf.br/handle/123456789/2619
identifier_str_mv REMPEL, Alan. Produção de bioetanol e biometano a partir da biomassa de spirulina sp. 2018. 86 f. Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2018.
url https://repositorio.upf.br/handle/123456789/2619
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade de Passo Fundo
Faculdade de Engenharia e Arquitetura – FEAR
Brasil
UPF
Programa de Pós-Graduação em Engenharia Civil e Ambiental
publisher.none.fl_str_mv Universidade de Passo Fundo
Faculdade de Engenharia e Arquitetura – FEAR
Brasil
UPF
Programa de Pós-Graduação em Engenharia Civil e Ambiental
dc.source.none.fl_str_mv reponame:Repositório Institucional da UPF
instname:Universidade de Passo Fundo (UPF)
instacron:UPF
instname_str Universidade de Passo Fundo (UPF)
instacron_str UPF
institution UPF
reponame_str Repositório Institucional da UPF
collection Repositório Institucional da UPF
repository.name.fl_str_mv Repositório Institucional da UPF - Universidade de Passo Fundo (UPF)
repository.mail.fl_str_mv jucelei@upf.br||biblio@upf.br
_version_ 1850430310508920832