Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Simon, Viviane
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade de Passo Fundo
Instituto de Tecnologia – ITEC
Brasil
UPF
Programa de Pós-Graduação em Engenharia Civil e Ambiental
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.upf.br/handle/123456789/2717
Resumo: The microalgae Spirulina platensis is a microorganism with great application potential biotechnology. Among the obstacles associated with the cultivation process, the harvest of biomass. Bioflocculation is a viable alternative, as it uses microbial biomass, such as Aspergillus niger, as bioflocculants. The biomass resulting from the Bioflocculation can be used to produce high-value-added bioproducts. For the Cell disruption methods are used to fully exploit this biomass. Therefore, it is Specific knowledge of microbial composition and cellular structure is important for ensure the efficiency of hydrolysis and conversion into bioproducts. For cell rupture they are very physical-chemical or biological treatments (use of microorganisms or enzymes) are used. Given the specificity of enzymes, enzymatic hydrolysis is advantageous compared to commonly used technologies, and it is important to know which enzymes are necessary for the hydrolysis of each type of biomass. Furthermore, it is known that enzymes existing commercial products are applicable, but are not developed especially for the hydrolysis of plant biomass, requiring knowledge of how they act in microbial biomasses in relation to operational ranges of use. In this sense, the objective of study is to evaluate physical and enzymatic processes in the hydrolysis of microbial biomasses to application in energy production. Initially, microalgal harvesting tests were carried out with different bioflocculant contents and millivoltage adjustment for the microalgae S. platensis, achieving efficiencies of 99.7% (1:8 fungus:microalgae ratio). With an increase in scale the efficiency results were maintained. For bioflocculated biomass were tested, subsequently, pre-treatments (ultrasound, autoclave and freezing/thawing), which were evaluated based on the release of total reducing sugars (AR) over 6 h, pH 4.5, 50 ºC, 120 rpm in a water bath, with the addition of amylase enzymes (Amylase AG XXL), AMG (Sazyme GO2 e), cellulase (Celuclast 1.5 L) and xylanase (Ultraflo Max). From the best efficiency results, were defined as standard pretreatment, autoclaving. In then, the characterization of the enzymes was carried out in relation to pH and ideal temperatures, using your standard substrates. At this stage, another amylase enzyme was added (LpHera) to the tests. All enzymes had greater activity at pH 4.5 and temperatures 60º (Amylase and AMG), 70ºC (cellulase) and 50 ºC (xylanase). With optimal temperatures and pHs defined, enzyme addition percentages (0.01, 0.03 and 0.05%) were tested for hydrolysis of bioflocculated biomass. The tests were carried out until stabilization in the yields of AIR. In general, there was no statistical difference between enzyme concentrations used, with the use being defined as 0.01%. Next, different associations were tested of enzymes in the hydrolysis of bioflocculated biomass, and the use of Blend containing amylase, AMG and cellulase obtained the best results, with approximately 70% efficiency, considering pre-treatment and enzymatic action. The associated use of enzymes proved to be more efficient than individual use, being an alternative to the hydrolysis of biomass complex, such as the bioflocculated one that contains A. niger. Furthermore, the importance of optimization in enzymatic hydrolysis processes, and depending on the biomass used, enzymes can act in different ways, requiring concentration studies, operating time and associated use, mainly.
id UPF_44463f687125f115da5b1f93e5caf3c9
oai_identifier_str oai:repositorio.upf.br:123456789/2717
network_acronym_str UPF
network_name_str Repositório Institucional da UPF
repository_id_str
spelling Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungoSpirulinaBiomassaHidróliseAlgaENGENHARIAS::ENGENHARIA CIVILThe microalgae Spirulina platensis is a microorganism with great application potential biotechnology. Among the obstacles associated with the cultivation process, the harvest of biomass. Bioflocculation is a viable alternative, as it uses microbial biomass, such as Aspergillus niger, as bioflocculants. The biomass resulting from the Bioflocculation can be used to produce high-value-added bioproducts. For the Cell disruption methods are used to fully exploit this biomass. Therefore, it is Specific knowledge of microbial composition and cellular structure is important for ensure the efficiency of hydrolysis and conversion into bioproducts. For cell rupture they are very physical-chemical or biological treatments (use of microorganisms or enzymes) are used. Given the specificity of enzymes, enzymatic hydrolysis is advantageous compared to commonly used technologies, and it is important to know which enzymes are necessary for the hydrolysis of each type of biomass. Furthermore, it is known that enzymes existing commercial products are applicable, but are not developed especially for the hydrolysis of plant biomass, requiring knowledge of how they act in microbial biomasses in relation to operational ranges of use. In this sense, the objective of study is to evaluate physical and enzymatic processes in the hydrolysis of microbial biomasses to application in energy production. Initially, microalgal harvesting tests were carried out with different bioflocculant contents and millivoltage adjustment for the microalgae S. platensis, achieving efficiencies of 99.7% (1:8 fungus:microalgae ratio). With an increase in scale the efficiency results were maintained. For bioflocculated biomass were tested, subsequently, pre-treatments (ultrasound, autoclave and freezing/thawing), which were evaluated based on the release of total reducing sugars (AR) over 6 h, pH 4.5, 50 ºC, 120 rpm in a water bath, with the addition of amylase enzymes (Amylase AG XXL), AMG (Sazyme GO2 e), cellulase (Celuclast 1.5 L) and xylanase (Ultraflo Max). From the best efficiency results, were defined as standard pretreatment, autoclaving. In then, the characterization of the enzymes was carried out in relation to pH and ideal temperatures, using your standard substrates. At this stage, another amylase enzyme was added (LpHera) to the tests. All enzymes had greater activity at pH 4.5 and temperatures 60º (Amylase and AMG), 70ºC (cellulase) and 50 ºC (xylanase). With optimal temperatures and pHs defined, enzyme addition percentages (0.01, 0.03 and 0.05%) were tested for hydrolysis of bioflocculated biomass. The tests were carried out until stabilization in the yields of AIR. In general, there was no statistical difference between enzyme concentrations used, with the use being defined as 0.01%. Next, different associations were tested of enzymes in the hydrolysis of bioflocculated biomass, and the use of Blend containing amylase, AMG and cellulase obtained the best results, with approximately 70% efficiency, considering pre-treatment and enzymatic action. The associated use of enzymes proved to be more efficient than individual use, being an alternative to the hydrolysis of biomass complex, such as the bioflocculated one that contains A. niger. Furthermore, the importance of optimization in enzymatic hydrolysis processes, and depending on the biomass used, enzymes can act in different ways, requiring concentration studies, operating time and associated use, mainly.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA microalga Spirulina platensis é um microrganismo com grande potencial de aplicação biotecnológico. Dentre os obstáculos associados ao processo de cultivo, destacam-se a colheita da biomassa. A biofloculação é uma alternativa viável, pois utiliza as biomassas microbianas, a exemplo do Aspergillus niger, como biofloculantes. A biomassa resultante do processo de biofloculação pode ser utilizada para a produção de bioprodutos de alto valor agregado. Para a total exploração dessa biomassa são utilizados métodos de ruptura celular. Sendo assim, é importante o conhecimento específico da composição e estrutura celular microbiana para garantir a eficiência de hidrólise e conversão em bioprodutos. Para a ruptura celular são muito utilizados tratamentos físico-químicos, ou biológicos (uso de microrganismos ou enzimas). Visto a especificidade das enzimas, a hidrólise enzimática é vantajosa se comparada às tecnologias comumente utilizadas, sendo importante o conhecimento de quais enzimas são necessárias para a hidrólise de cada tipo de biomassa. Além disso, sabe-se que as enzimas comerciais existentes são aplicáveis, porém não são desenvolvidas especialmente para a hidrólise de biomassas vegetais, sendo necessário o conhecimento de como atuam em biomassas microbianas em relação às faixas operacionais de uso. Nesse sentido, o objetivo do estudo é avaliar processos físicos e enzimáticos na hidrólise de biomassas microbianas para aplicação na produção energética. Inicialmente foram realizados testes de colheita microalgal com diferentes teores de biofloculante e ajuste de milivoltagem para a microalga S. platensis, alcançando eficiências de 99,7% (proporção 1:8 fungo:microalga). Com aumento de escala os resultados de eficiência foram mantidos. Para a biomassa biofloculada foram testados, posteriormente, pré-tratamentos (ultrassom, autoclave e congelamento/descongelamento), que foram avaliados a partir da liberação de açúcares redutores totais (AR) ao longo de 6 h, pH 4,5, 50 ºC, 120 rpm em banho maria, com a adição de enzimas amilase (Amylase AG XXL), AMG (Sazyme GO2 e), celulase (Celuclast 1.5 L) e xilanase (Ultraflo Max). A partir dos melhores resultados de eficiência, foram definidos como pré-tratamento padrão, a autoclavagem. Em seguida, foi realizada a caracterização das enzimas em relação ao pH e temperaturas ideais, utilizando seus substratos padrão. Nesta etapa, foi adicionada mais uma enzima amilase (LpHera) aos testes. Todas as enzimas tiveram maior atividade em pH 4,5 e, temperaturas de 60º (Amilase e AMG), 70ºC (celulase) e 50 ºC (xilanase). Com as temperaturas e pHs ótimos definidos, foram testados percentuais de adição de enzimas (0,01; 0,03 e 0,05%) para hidrólise da biomassa biofloculada. Os ensaios foram conduzidos até estabilização nos rendimentos de AR. De forma geral, não houve diferença estatística entre as concentrações de enzima utilizadas, sendo definida a utilização de 0,01%. A seguir, foram testadas diferentes associações de enzimas na hidrólise da biomassa biofloculada, sendo que o uso do Blend contendo amilase, AMG e celulase obteve os melhores resultados, com aproximadamente 70% de eficiência, considerando pré-tratamento e ação enzimática. O uso associado de enzimas mostrou-se mais eficiente que o uso individual, sendo uma alternativa para a hidrólise de biomassas mais complexas, como a biofloculada que contém o A. niger. Ainda, destaca-se a importância de otimização nos processos de hidrólise enzimática, sendo que, a depender das biomassas utilizadas, as enzimas podem atuar de formas diferentes, necessitando estudos de concentração, tempo de atuação e, uso associado, principalmente.Universidade de Passo FundoInstituto de Tecnologia – ITECBrasilUPFPrograma de Pós-Graduação em Engenharia Civil e AmbientalColla, Luciane Mariahttp://lattes.cnpq.br/4804304036455640Simon, Viviane2025-05-07T14:29:11Z2023-04-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfSIMON, Viviane. Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo. 2023. 118 f. Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2023.https://repositorio.upf.br/handle/123456789/2717porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UPFinstname:Universidade de Passo Fundo (UPF)instacron:UPF2025-05-07T14:38:40Zoai:repositorio.upf.br:123456789/2717Repositório InstitucionalPRIhttp://repositorio.upf.br/oai/requestjucelei@upf.br||biblio@upf.bropendoar:16102025-05-07T14:38:40Repositório Institucional da UPF - Universidade de Passo Fundo (UPF)false
dc.title.none.fl_str_mv Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo
title Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo
spellingShingle Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo
Simon, Viviane
Spirulina
Biomassa
Hidrólise
Alga
ENGENHARIAS::ENGENHARIA CIVIL
title_short Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo
title_full Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo
title_fullStr Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo
title_full_unstemmed Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo
title_sort Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo
author Simon, Viviane
author_facet Simon, Viviane
author_role author
dc.contributor.none.fl_str_mv Colla, Luciane Maria
http://lattes.cnpq.br/4804304036455640
dc.contributor.author.fl_str_mv Simon, Viviane
dc.subject.por.fl_str_mv Spirulina
Biomassa
Hidrólise
Alga
ENGENHARIAS::ENGENHARIA CIVIL
topic Spirulina
Biomassa
Hidrólise
Alga
ENGENHARIAS::ENGENHARIA CIVIL
description The microalgae Spirulina platensis is a microorganism with great application potential biotechnology. Among the obstacles associated with the cultivation process, the harvest of biomass. Bioflocculation is a viable alternative, as it uses microbial biomass, such as Aspergillus niger, as bioflocculants. The biomass resulting from the Bioflocculation can be used to produce high-value-added bioproducts. For the Cell disruption methods are used to fully exploit this biomass. Therefore, it is Specific knowledge of microbial composition and cellular structure is important for ensure the efficiency of hydrolysis and conversion into bioproducts. For cell rupture they are very physical-chemical or biological treatments (use of microorganisms or enzymes) are used. Given the specificity of enzymes, enzymatic hydrolysis is advantageous compared to commonly used technologies, and it is important to know which enzymes are necessary for the hydrolysis of each type of biomass. Furthermore, it is known that enzymes existing commercial products are applicable, but are not developed especially for the hydrolysis of plant biomass, requiring knowledge of how they act in microbial biomasses in relation to operational ranges of use. In this sense, the objective of study is to evaluate physical and enzymatic processes in the hydrolysis of microbial biomasses to application in energy production. Initially, microalgal harvesting tests were carried out with different bioflocculant contents and millivoltage adjustment for the microalgae S. platensis, achieving efficiencies of 99.7% (1:8 fungus:microalgae ratio). With an increase in scale the efficiency results were maintained. For bioflocculated biomass were tested, subsequently, pre-treatments (ultrasound, autoclave and freezing/thawing), which were evaluated based on the release of total reducing sugars (AR) over 6 h, pH 4.5, 50 ºC, 120 rpm in a water bath, with the addition of amylase enzymes (Amylase AG XXL), AMG (Sazyme GO2 e), cellulase (Celuclast 1.5 L) and xylanase (Ultraflo Max). From the best efficiency results, were defined as standard pretreatment, autoclaving. In then, the characterization of the enzymes was carried out in relation to pH and ideal temperatures, using your standard substrates. At this stage, another amylase enzyme was added (LpHera) to the tests. All enzymes had greater activity at pH 4.5 and temperatures 60º (Amylase and AMG), 70ºC (cellulase) and 50 ºC (xylanase). With optimal temperatures and pHs defined, enzyme addition percentages (0.01, 0.03 and 0.05%) were tested for hydrolysis of bioflocculated biomass. The tests were carried out until stabilization in the yields of AIR. In general, there was no statistical difference between enzyme concentrations used, with the use being defined as 0.01%. Next, different associations were tested of enzymes in the hydrolysis of bioflocculated biomass, and the use of Blend containing amylase, AMG and cellulase obtained the best results, with approximately 70% efficiency, considering pre-treatment and enzymatic action. The associated use of enzymes proved to be more efficient than individual use, being an alternative to the hydrolysis of biomass complex, such as the bioflocculated one that contains A. niger. Furthermore, the importance of optimization in enzymatic hydrolysis processes, and depending on the biomass used, enzymes can act in different ways, requiring concentration studies, operating time and associated use, mainly.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-12
2025-05-07T14:29:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SIMON, Viviane. Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo. 2023. 118 f. Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2023.
https://repositorio.upf.br/handle/123456789/2717
identifier_str_mv SIMON, Viviane. Hidrólise de polissacarídeos de biomassa microalgal biofloculada com fungo. 2023. 118 f. Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2023.
url https://repositorio.upf.br/handle/123456789/2717
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade de Passo Fundo
Instituto de Tecnologia – ITEC
Brasil
UPF
Programa de Pós-Graduação em Engenharia Civil e Ambiental
publisher.none.fl_str_mv Universidade de Passo Fundo
Instituto de Tecnologia – ITEC
Brasil
UPF
Programa de Pós-Graduação em Engenharia Civil e Ambiental
dc.source.none.fl_str_mv reponame:Repositório Institucional da UPF
instname:Universidade de Passo Fundo (UPF)
instacron:UPF
instname_str Universidade de Passo Fundo (UPF)
instacron_str UPF
institution UPF
reponame_str Repositório Institucional da UPF
collection Repositório Institucional da UPF
repository.name.fl_str_mv Repositório Institucional da UPF - Universidade de Passo Fundo (UPF)
repository.mail.fl_str_mv jucelei@upf.br||biblio@upf.br
_version_ 1850430320810131456