Determinants of credit ratings and their impact as a measure of financial performance
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng por |
| Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Link de acesso: | https://dspace.mackenzie.br/handle/10899/33742 |
Resumo: | This research focuses on investigating the determinants of credit ratings and evaluating their significance as indicators of financial performance for companies listed on the S&P 500. To identify the determinants of credit ratings, the study treats credit ratings as the dependent variable, recognizing their essential role in providing insights into financial risk. The analysis incorporates ten independent variables, which fall into subcategories including leverage, profitability, liquidity, market-related factors, survival indicators, and macroeconomic factors. To further assess the impact of credit ratings on financial performance, the study considers two dependent variables: Return on Assets (ROA) and Tobin's Q (TQ). These variables are studied in relation to credit ratings (CRWLTA), along with a set of independent variables, encompassing Total Debt to Total Assets (TDTA), Total Shareholder Return (TSR), EBITDA Interest coverage (EBITDAICOV), Quick Ratio (QR), Altman's Z-Score (AZS), and macroeconomic factors like GDP growth, Consumer Price Index (CPI) inflation, and the Federal Reserve Interest Rate (FDRI). The empirical analysis is based on data from 2398 observations of 240 companies rated by S&P Global Ratings over the period 2009-2013. The study employs the Generalized Method of Moments (GMM) methodology to estimate the models, chosen for its ability to address potential endogeneity issues in the independent variables. The findings related to the determinants of credit ratings reveal that interest coverage and Altman's Z-score are statistically significant factors, with a significance level of 1%, in explaining variations in credit ratings. This suggests that these two variables have a substantial impact on a company's creditworthiness. Overall, this study offers valuable insights into the factors influencing corporate credit ratings, providing useful information for financial institutions and companies when making informed lending and financing decisions. In terms of examining the impact of credit ratings as indicators of financial performance, the results indicate a negative association with TQ, although statistical significance is not achieved. Additionally, there is a negative relationship with ROA that approaches statistical significance. These findings imply that while credit ratings may not directly influence TQ, they could potentially have implications for a company's profitability. |
| id |
UPM_d2daa17a82beaf803120ebfd5f710d5c |
|---|---|
| oai_identifier_str |
oai:dspace.mackenzie.br:10899/33742 |
| network_acronym_str |
UPM |
| network_name_str |
Repositório Digital do Mackenzie |
| repository_id_str |
|
| spelling |
Oliveira, Nazário Augusto deBasso, Leonardo Fernando Cruz2023-12-02T00:09:21Z2023-12-02T00:09:21Z2023-11-21This research focuses on investigating the determinants of credit ratings and evaluating their significance as indicators of financial performance for companies listed on the S&P 500. To identify the determinants of credit ratings, the study treats credit ratings as the dependent variable, recognizing their essential role in providing insights into financial risk. The analysis incorporates ten independent variables, which fall into subcategories including leverage, profitability, liquidity, market-related factors, survival indicators, and macroeconomic factors. To further assess the impact of credit ratings on financial performance, the study considers two dependent variables: Return on Assets (ROA) and Tobin's Q (TQ). These variables are studied in relation to credit ratings (CRWLTA), along with a set of independent variables, encompassing Total Debt to Total Assets (TDTA), Total Shareholder Return (TSR), EBITDA Interest coverage (EBITDAICOV), Quick Ratio (QR), Altman's Z-Score (AZS), and macroeconomic factors like GDP growth, Consumer Price Index (CPI) inflation, and the Federal Reserve Interest Rate (FDRI). The empirical analysis is based on data from 2398 observations of 240 companies rated by S&P Global Ratings over the period 2009-2013. The study employs the Generalized Method of Moments (GMM) methodology to estimate the models, chosen for its ability to address potential endogeneity issues in the independent variables. The findings related to the determinants of credit ratings reveal that interest coverage and Altman's Z-score are statistically significant factors, with a significance level of 1%, in explaining variations in credit ratings. This suggests that these two variables have a substantial impact on a company's creditworthiness. Overall, this study offers valuable insights into the factors influencing corporate credit ratings, providing useful information for financial institutions and companies when making informed lending and financing decisions. In terms of examining the impact of credit ratings as indicators of financial performance, the results indicate a negative association with TQ, although statistical significance is not achieved. Additionally, there is a negative relationship with ROA that approaches statistical significance. These findings imply that while credit ratings may not directly influence TQ, they could potentially have implications for a company's profitability.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nívelhttps://dspace.mackenzie.br/handle/10899/33742engporUniversidade Presbiteriana MackenzieUPMBrasilcredit ratingcredit riskdeterminantsfinancial performancerisk managementDeterminants of credit ratings and their impact as a measure of financial performanceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Digital do Mackenzieinstname:Universidade Presbiteriana Mackenzie (MACKENZIE)instacron:MACKENZIEinfo:eu-repo/semantics/openAccesshttp://lattes.cnpq.br/1866154361601651https://orcid.org/0000-0002-3064-0194http://lattes.cnpq.br/1472150238383953Forte, Denishttp://lattes.cnpq.br/0075062531510292https://orcid.org/0000-0002-2933-2039Kimura, Herberthttp://lattes.cnpq.br/2048706172366367https://orcid.org/0000-0001-6772-1863Esta pesquisa concentra-se em identificar os determinantes das classificações de crédito e avaliar sua importância como indicadores de desempenho financeiro para empresas listadas no S&P 500. Para identificar os determinantes das classificações de crédito, o estudo trata as classificações de crédito como a variável dependente, reconhecendo seu papel essencial em fornecer informações sobre o risco financeiro. A análise incorpora dez variáveis independentes, que se enquadram em subcategorias, incluindo alavancagem, rentabilidade, liquidez, fatores relacionados ao mercado, indicadores de sobrevivência e fatores macroeconômicos. Para avaliar ainda mais o impacto das classificações de crédito no desempenho financeiro, o estudo considera duas variáveis dependentes: Retorno sobre Ativos (ROA) e Tobin's Q (TQ). Essas variáveis são estudadas em relação às classificações de crédito (CRWLTA), juntamente com um conjunto de variáveis independentes, que incluem Dívida Total sobre Ativos Totais (TDTA), Retorno Total para Acionistas (TSR), Cobertura de Juros pelo EBITDA (EBITDAICOV), Razão Rápida (QR), Escore Z de Altman (AZS) e fatores macroeconômicos, como crescimento do Produto Interno Bruto (PIB), inflação do Índice de Preços ao Consumidor (IPC) e Taxa de Juros do Federal Reserve (FDRI). A análise empírica é baseada em dados de 2398 observações de 240 empresas avaliadas pela S&P Global Ratings no período de 2009 a 2013. O estudo utiliza a metodologia do Método Generalizado de Momentos (GMM) para estimar os modelos, escolhida por sua capacidade de abordar possíveis questões de endogeneidade nas variáveis independentes. Os resultados relacionados aos determinantes das classificações de crédito revelam que a cobertura de juros e o AZS são fatores estatisticamente significativos, com um nível de significância de 1%, na explicação das variações nas classificações de crédito. Isso sugere que essas duas variáveis têm um impacto substancial na solidez financeira de uma empresa. No geral, este estudo oferece informações valiosas sobre os fatores que influenciam as classificações de crédito corporativas, fornecendo informações úteis para instituições financeiras e empresas ao tomar decisões informadas de empréstimo e financiamento. Em relação à análise do impacto das classificações de crédito como indicadores de desempenho financeiro, os resultados indicam uma associação negativa com o TQ, embora não seja alcançada significância estatística. Além disso, há uma relação negativa com o ROA que se aproxima da significância estatística. Isso implica que, embora as classificações de crédito possam não influenciar diretamente o TQ, elas podem potencialmente ter implicações no lucro de uma empresa.classificação de créditorisco de créditodeterminantesperformance financeiragerenciamento de riscoCentro de Ciências Sociais e Aplicadas (CCSA)Administração de EmpresasCNPQ::CIENCIAS SOCIAIS APLICADASORIGINALNAZARIO AUGUSTO DE OLIVEIRA.pdfNAZARIO AUGUSTO DE OLIVEIRA.pdfapplication/pdf1267125https://dspace.mackenzie.br/bitstreams/5a09ccd1-14ea-497c-9ba2-8b07ccc51712/downloadffdb9055608ddea45682a310a3b13290MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82269https://dspace.mackenzie.br/bitstreams/1aafe2e8-8ab7-49bc-82ff-f155e9fad016/downloadf0d4931322d30f6d2ee9ebafdf037c16MD52TEXTNAZARIO AUGUSTO DE OLIVEIRA.pdf.txtNAZARIO AUGUSTO DE OLIVEIRA.pdf.txtExtracted texttext/plain204636https://dspace.mackenzie.br/bitstreams/c7d46c4b-8f2d-43a1-b5b1-b8659a819dd4/download64f5af3f4fa8f32f001fe6e815eccbf3MD53THUMBNAILNAZARIO AUGUSTO DE OLIVEIRA.pdf.jpgNAZARIO AUGUSTO DE OLIVEIRA.pdf.jpgGenerated Thumbnailimage/jpeg2611https://dspace.mackenzie.br/bitstreams/b4decc87-5d8b-452f-b2fe-e6006b839a8c/download9e78d0de1fe630845f89ecaa7df87594MD5410899/337422023-12-02 01:03:12.958oai:dspace.mackenzie.br:10899/33742https://dspace.mackenzie.brBiblioteca Digital de Teses e Dissertaçõeshttp://tede.mackenzie.br/jspui/PRIhttps://adelpha-api.mackenzie.br/server/oai/repositorio@mackenzie.br||paola.damato@mackenzie.bropendoar:102772023-12-02T01:03:12Repositório Digital do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKPGJyPjxicj4KQ29tIG8gYWNlaXRlIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIHNldSB0cmFiYWxobyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgo8YnI+PGJyPgpBY2VpdGFuZG8gZXNzYSBsaWNlbsOnYSB2b2PDqiBjb25jb3JkYSBxdWUgYSBVbml2ZXJzaWRhZGUgUHJlc2JpdGVyaWFuYSBNYWNrZW56aWUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIG8gc2V1IHRyYWJhbGhvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkbyBzZXUgdHJhYmFsaG8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgo8YnI+PGJyPgpDb25jb3JkYXLDoSBxdWUgc2V1IHRyYWJhbGhvIHRhbWLDqW0gc2Vyw6EgcmVnaWRvIHBlbGEgQ3JlYXRpdmUgQ29tbW9ucyBxdWUgTsODTyBwZXJtaXRlIG8gdXNvIGNvbWVyY2lhbCBvdSBxdWFscXVlciBhbHRlcmHDp8OjbyBkYSBvYnJhIHBvciB0ZXJjZWlyb3MgY29uZm9ybWUgZGVzY3JpdG8gZW0gPGEgaHJlZj0iaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8iIHRhcmdldD0iX2JsYW5rIj5odHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLzwvYT4uCjxicj48YnI+ClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBvIGRlcMOzc2l0byBkbyBzZXUgdHJhYmFsaG8gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCjxicj48YnI+CkNhc28gbyBzZXUgdHJhYmFsaG8gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBQcmVzYml0ZXJpYW5hIE1hY2tlbnppZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRvIHNldSB0cmFiYWxobyBvcmEgZGVwb3NpdGFkby4KPGJyPjxicj4KQ0FTTyBPIFRSQUJBTEhPIE9SQSBERVBPU0lUQURPIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVU5JVkVSU0lEQURFIFBSRVNCSVRFUklBTkEgTUFDS0VOWklFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KPGJyPjxicj4KQSBVbml2ZXJzaWRhZGUgUHJlc2JpdGVyaWFuYSBNYWNrZW56aWUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIGRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZG8gc2V1IHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.none.fl_str_mv |
Determinants of credit ratings and their impact as a measure of financial performance |
| title |
Determinants of credit ratings and their impact as a measure of financial performance |
| spellingShingle |
Determinants of credit ratings and their impact as a measure of financial performance Oliveira, Nazário Augusto de credit rating credit risk determinants financial performance risk management |
| title_short |
Determinants of credit ratings and their impact as a measure of financial performance |
| title_full |
Determinants of credit ratings and their impact as a measure of financial performance |
| title_fullStr |
Determinants of credit ratings and their impact as a measure of financial performance |
| title_full_unstemmed |
Determinants of credit ratings and their impact as a measure of financial performance |
| title_sort |
Determinants of credit ratings and their impact as a measure of financial performance |
| author |
Oliveira, Nazário Augusto de |
| author_facet |
Oliveira, Nazário Augusto de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Oliveira, Nazário Augusto de |
| dc.contributor.advisor1.fl_str_mv |
Basso, Leonardo Fernando Cruz |
| contributor_str_mv |
Basso, Leonardo Fernando Cruz |
| dc.subject.por.fl_str_mv |
credit rating credit risk determinants financial performance risk management |
| topic |
credit rating credit risk determinants financial performance risk management |
| description |
This research focuses on investigating the determinants of credit ratings and evaluating their significance as indicators of financial performance for companies listed on the S&P 500. To identify the determinants of credit ratings, the study treats credit ratings as the dependent variable, recognizing their essential role in providing insights into financial risk. The analysis incorporates ten independent variables, which fall into subcategories including leverage, profitability, liquidity, market-related factors, survival indicators, and macroeconomic factors. To further assess the impact of credit ratings on financial performance, the study considers two dependent variables: Return on Assets (ROA) and Tobin's Q (TQ). These variables are studied in relation to credit ratings (CRWLTA), along with a set of independent variables, encompassing Total Debt to Total Assets (TDTA), Total Shareholder Return (TSR), EBITDA Interest coverage (EBITDAICOV), Quick Ratio (QR), Altman's Z-Score (AZS), and macroeconomic factors like GDP growth, Consumer Price Index (CPI) inflation, and the Federal Reserve Interest Rate (FDRI). The empirical analysis is based on data from 2398 observations of 240 companies rated by S&P Global Ratings over the period 2009-2013. The study employs the Generalized Method of Moments (GMM) methodology to estimate the models, chosen for its ability to address potential endogeneity issues in the independent variables. The findings related to the determinants of credit ratings reveal that interest coverage and Altman's Z-score are statistically significant factors, with a significance level of 1%, in explaining variations in credit ratings. This suggests that these two variables have a substantial impact on a company's creditworthiness. Overall, this study offers valuable insights into the factors influencing corporate credit ratings, providing useful information for financial institutions and companies when making informed lending and financing decisions. In terms of examining the impact of credit ratings as indicators of financial performance, the results indicate a negative association with TQ, although statistical significance is not achieved. Additionally, there is a negative relationship with ROA that approaches statistical significance. These findings imply that while credit ratings may not directly influence TQ, they could potentially have implications for a company's profitability. |
| publishDate |
2023 |
| dc.date.accessioned.fl_str_mv |
2023-12-02T00:09:21Z |
| dc.date.available.fl_str_mv |
2023-12-02T00:09:21Z |
| dc.date.issued.fl_str_mv |
2023-11-21 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://dspace.mackenzie.br/handle/10899/33742 |
| url |
https://dspace.mackenzie.br/handle/10899/33742 |
| dc.language.iso.fl_str_mv |
eng por |
| language |
eng por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Presbiteriana Mackenzie |
| dc.publisher.initials.fl_str_mv |
UPM |
| dc.publisher.country.fl_str_mv |
Brasil |
| publisher.none.fl_str_mv |
Universidade Presbiteriana Mackenzie |
| dc.source.none.fl_str_mv |
reponame:Repositório Digital do Mackenzie instname:Universidade Presbiteriana Mackenzie (MACKENZIE) instacron:MACKENZIE |
| instname_str |
Universidade Presbiteriana Mackenzie (MACKENZIE) |
| instacron_str |
MACKENZIE |
| institution |
MACKENZIE |
| reponame_str |
Repositório Digital do Mackenzie |
| collection |
Repositório Digital do Mackenzie |
| bitstream.url.fl_str_mv |
https://dspace.mackenzie.br/bitstreams/5a09ccd1-14ea-497c-9ba2-8b07ccc51712/download https://dspace.mackenzie.br/bitstreams/1aafe2e8-8ab7-49bc-82ff-f155e9fad016/download https://dspace.mackenzie.br/bitstreams/c7d46c4b-8f2d-43a1-b5b1-b8659a819dd4/download https://dspace.mackenzie.br/bitstreams/b4decc87-5d8b-452f-b2fe-e6006b839a8c/download |
| bitstream.checksum.fl_str_mv |
ffdb9055608ddea45682a310a3b13290 f0d4931322d30f6d2ee9ebafdf037c16 64f5af3f4fa8f32f001fe6e815eccbf3 9e78d0de1fe630845f89ecaa7df87594 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Digital do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE) |
| repository.mail.fl_str_mv |
repositorio@mackenzie.br||paola.damato@mackenzie.br |
| _version_ |
1851946073674743808 |