Usando redes Bayesianas para a previsão da rentabilidade de empresas

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: L'Astorina, Humberto Carlos
Orientador(a): Borenstein, Denis
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/16071
Resumo: O presente trabalho emprega Redes Bayesianas para a previsão da rentabilidade de empresas. Define-se como rentabilidade superior as empresa que obtiveram retorno para os acionistas classificados acima de 81,5% em relação às demais. Adota-se a metodologia de seleção dos indicadores proposta por Sun e Shenoy (2007), que seleciona as variáveis explicativas segundo suas correlações com a variável classificadora. Obtêm-se, ao final, dois modelos sendo o primeiro com dois estados de classificação de empresas, superior e inferior; o segundo com três estados (superior mediano e inferior). Assim como Sun e Shenoy (2007), tenta-se validar o modelo Bayesiano com a regressão logística. Constata-se que não é possível afirmar que as média das taxas de sucesso dos dois modelos sejam diferentes ao se prever rentabilidade superior, entretanto a regressão tem melhor desempenho ao se prever rentabilidade baixa. A variável mais significativa tanto para o primeiro quanto para o segundo modelos foi a classificação atual da empresa, ou seja, empresas que figuram em um determinado ano no estado de rentabilidade superior são as mais propensas a repetir o resultado do que as demais. Os resultados apontam taxas de acerto que vão de 14,70% em 1999 (ano da crise cambial quando a rentabilidade média das empresas foi de 2,74%) a 52,94% em 1997 (ano cuja rentabilidade média foi de 11,76%) para o primeiro modelo e de 11,76 % (1999) a 56,60 % (2004, rentabilidade média de 10,76%) para o segundo modelo. Apesar dos modelos ainda não conseguirem alcançar uma estabilidade nas previsões os resultados são animadores quando se desenvolve a hipótese de utilidade para um possível investidor e a expectativa de retorno acumulado, ao longo dos dez anos, passa de 70,37%, que é a rentabilidade média acumulada do período, para 357,07% e 410,10 % para o primeiro e o segundo modelo respectivamente.
id URGS_0498566ddbbce3bc14a0c27d92a40000
oai_identifier_str oai:www.lume.ufrgs.br:10183/16071
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling L'Astorina, Humberto CarlosBorenstein, Denis2009-06-06T04:13:05Z2009http://hdl.handle.net/10183/16071000695699O presente trabalho emprega Redes Bayesianas para a previsão da rentabilidade de empresas. Define-se como rentabilidade superior as empresa que obtiveram retorno para os acionistas classificados acima de 81,5% em relação às demais. Adota-se a metodologia de seleção dos indicadores proposta por Sun e Shenoy (2007), que seleciona as variáveis explicativas segundo suas correlações com a variável classificadora. Obtêm-se, ao final, dois modelos sendo o primeiro com dois estados de classificação de empresas, superior e inferior; o segundo com três estados (superior mediano e inferior). Assim como Sun e Shenoy (2007), tenta-se validar o modelo Bayesiano com a regressão logística. Constata-se que não é possível afirmar que as média das taxas de sucesso dos dois modelos sejam diferentes ao se prever rentabilidade superior, entretanto a regressão tem melhor desempenho ao se prever rentabilidade baixa. A variável mais significativa tanto para o primeiro quanto para o segundo modelos foi a classificação atual da empresa, ou seja, empresas que figuram em um determinado ano no estado de rentabilidade superior são as mais propensas a repetir o resultado do que as demais. Os resultados apontam taxas de acerto que vão de 14,70% em 1999 (ano da crise cambial quando a rentabilidade média das empresas foi de 2,74%) a 52,94% em 1997 (ano cuja rentabilidade média foi de 11,76%) para o primeiro modelo e de 11,76 % (1999) a 56,60 % (2004, rentabilidade média de 10,76%) para o segundo modelo. Apesar dos modelos ainda não conseguirem alcançar uma estabilidade nas previsões os resultados são animadores quando se desenvolve a hipótese de utilidade para um possível investidor e a expectativa de retorno acumulado, ao longo dos dez anos, passa de 70,37%, que é a rentabilidade média acumulada do período, para 357,07% e 410,10 % para o primeiro e o segundo modelo respectivamente.This work use the knowledge obtained from Bayesian networks studies of bankruptcy prediction and applied it for forecasting companies' profitability. Higher profitability is defined as the company that had returns for shareholders classified over 81.5% compared to the others. Adopting the methodology of selection of the explanatory variables proposed by Sun and SHENOY (2007) based on correlations among them with the classification variable. As a result it is obtained two models, the first one with two classification states for de classification variable, upper and low, and the second one with three states (upper, middle and low). As Sun and SHENOY (2007), the Bayesian model was compared with a logistic regression. It cannot be say that the average success rates of the two models are different for forecasting higher profitability; otherwise, for low profitability forecasts the regression model was superior. The most significant variable for both the first and for the second model was the previous company's return for the shareholders, i.e. companies that are in a given year in the state of upper profitability are more likely to repeat the resulting the next year. The results show success rates ranging from 14.70% in 1999 (year of the currency crisis when the average profitability of the companies was 2.74%) to 52.94% in 1997 (average return rate was 11.76 %) for the first model and from 11.76% (1999) to 56.60% (2004, average return rate was 10.76%) for the second model. Although the models still fail to achieve stability in the estimates the results are encouraging when developing the hypothesis of possible investor profitability when the expectation of return accumulated over the ten years, range from 70.37%, which is the average profitability accumulated in the period to 357.07% and 410.10% respectively for the first and second model.application/pdfporRentabilidadePrevisãoRedes bayesianasForecastFuture profitabilityBayesian networksUsando redes Bayesianas para a previsão da rentabilidade de empresasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulEscola de AdministraçãoPrograma de Pós-Graduação em AdministraçãoPorto Alegre, BR-RS2009mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000695699.pdf000695699.pdfTexto completoapplication/pdf1141898http://www.lume.ufrgs.br/bitstream/10183/16071/1/000695699.pdff2578b94f432be0bebd3ab5e32a89c3cMD51TEXT000695699.pdf.txt000695699.pdf.txtExtracted Texttext/plain130563http://www.lume.ufrgs.br/bitstream/10183/16071/2/000695699.pdf.txt02174b8332030fdbc3f31606db7eb250MD52THUMBNAIL000695699.pdf.jpg000695699.pdf.jpgGenerated Thumbnailimage/jpeg1090http://www.lume.ufrgs.br/bitstream/10183/16071/3/000695699.pdf.jpgea8f472e9f66cbcc224903df0a1a2dc8MD5310183/160712018-10-15 08:07:46.114oai:www.lume.ufrgs.br:10183/16071Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-15T11:07:46Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Usando redes Bayesianas para a previsão da rentabilidade de empresas
title Usando redes Bayesianas para a previsão da rentabilidade de empresas
spellingShingle Usando redes Bayesianas para a previsão da rentabilidade de empresas
L'Astorina, Humberto Carlos
Rentabilidade
Previsão
Redes bayesianas
Forecast
Future profitability
Bayesian networks
title_short Usando redes Bayesianas para a previsão da rentabilidade de empresas
title_full Usando redes Bayesianas para a previsão da rentabilidade de empresas
title_fullStr Usando redes Bayesianas para a previsão da rentabilidade de empresas
title_full_unstemmed Usando redes Bayesianas para a previsão da rentabilidade de empresas
title_sort Usando redes Bayesianas para a previsão da rentabilidade de empresas
author L'Astorina, Humberto Carlos
author_facet L'Astorina, Humberto Carlos
author_role author
dc.contributor.author.fl_str_mv L'Astorina, Humberto Carlos
dc.contributor.advisor1.fl_str_mv Borenstein, Denis
contributor_str_mv Borenstein, Denis
dc.subject.por.fl_str_mv Rentabilidade
Previsão
Redes bayesianas
topic Rentabilidade
Previsão
Redes bayesianas
Forecast
Future profitability
Bayesian networks
dc.subject.eng.fl_str_mv Forecast
Future profitability
Bayesian networks
description O presente trabalho emprega Redes Bayesianas para a previsão da rentabilidade de empresas. Define-se como rentabilidade superior as empresa que obtiveram retorno para os acionistas classificados acima de 81,5% em relação às demais. Adota-se a metodologia de seleção dos indicadores proposta por Sun e Shenoy (2007), que seleciona as variáveis explicativas segundo suas correlações com a variável classificadora. Obtêm-se, ao final, dois modelos sendo o primeiro com dois estados de classificação de empresas, superior e inferior; o segundo com três estados (superior mediano e inferior). Assim como Sun e Shenoy (2007), tenta-se validar o modelo Bayesiano com a regressão logística. Constata-se que não é possível afirmar que as média das taxas de sucesso dos dois modelos sejam diferentes ao se prever rentabilidade superior, entretanto a regressão tem melhor desempenho ao se prever rentabilidade baixa. A variável mais significativa tanto para o primeiro quanto para o segundo modelos foi a classificação atual da empresa, ou seja, empresas que figuram em um determinado ano no estado de rentabilidade superior são as mais propensas a repetir o resultado do que as demais. Os resultados apontam taxas de acerto que vão de 14,70% em 1999 (ano da crise cambial quando a rentabilidade média das empresas foi de 2,74%) a 52,94% em 1997 (ano cuja rentabilidade média foi de 11,76%) para o primeiro modelo e de 11,76 % (1999) a 56,60 % (2004, rentabilidade média de 10,76%) para o segundo modelo. Apesar dos modelos ainda não conseguirem alcançar uma estabilidade nas previsões os resultados são animadores quando se desenvolve a hipótese de utilidade para um possível investidor e a expectativa de retorno acumulado, ao longo dos dez anos, passa de 70,37%, que é a rentabilidade média acumulada do período, para 357,07% e 410,10 % para o primeiro e o segundo modelo respectivamente.
publishDate 2009
dc.date.accessioned.fl_str_mv 2009-06-06T04:13:05Z
dc.date.issued.fl_str_mv 2009
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/16071
dc.identifier.nrb.pt_BR.fl_str_mv 000695699
url http://hdl.handle.net/10183/16071
identifier_str_mv 000695699
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/16071/1/000695699.pdf
http://www.lume.ufrgs.br/bitstream/10183/16071/2/000695699.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/16071/3/000695699.pdf.jpg
bitstream.checksum.fl_str_mv f2578b94f432be0bebd3ab5e32a89c3c
02174b8332030fdbc3f31606db7eb250
ea8f472e9f66cbcc224903df0a1a2dc8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831315858977193984