Estudo da pirólise de óxido de grafite em altas pressões com dinâmica molecular reativa

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Christmann, Augusto Mohr
Orientador(a): Muniz, André Rodrigues
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/179550
Resumo: A pirólise de materiais tem sido usada para a produção de produtos de maior interesse, em busca de novas aplicações ou melhores propriedades que seu antecessor. Por exemplo, o tratamento térmico aplicado ao óxido de grafite é usado para a produção de óxido de grafeno reduzido, que apresenta propriedades e estrutura semelhantes ao grafeno, sendo este processo uma alternativa para sua produção em larga escala, com potencial aplicação em uma nova geração de dispositivos eletrônicos e nanocompósitos. Neste trabalho, simulações de dinâmica molecular reativa com o potencial reaxFF foram conduzidas para observar em nível atômico as mudanças estruturais e eventos reativos durante este processo, permitindo a identificação dos mecanismos principais envolvidos e um maior entendimento da dependência das condições de temperatura (de 800 a 3000 K) e pressão (ambiente, 2,5 e 7,7 GPa) usadas com as características do produtos formados. Para uma lâmina de óxido de grafeno isolada e para uma estrutura de óxido de grafite, buscou-se entender o efeito da temperatura e pressão aplicada na qualidade dos produtos formados, que vão desde folhas de óxido de grafeno reduzido até nanocristais de grafite, conforme observado em experimentos. As simulações mostram que o tratamento térmico causou uma conversão de seus grupos orgânicos iniciais (hidroxila/epóxi para carbonila/éter), liberação de moléculas gasosas (H2O, CO2 e H2), criação de defeitos e/ou reconstrução da estrutura grafítica. As reações são intensificadas com aumento da temperatura, e observa-se a presença de grupos oxigenados na estrutura resultante mesmo em altas temperaturas (3000 K). Em pressão ambiente os gases gerados causam a exfoliação das folhas e os grupos remanescentes causam defeitos isolados por toda a estrutura. Porém, em alta pressão (7,7 GPa) estas mantêm-se próximas, inibindo a formação de gases e aumentando a difusão dos grupos orgânicos pela superfície, que levam a formação de rasgos pela estrutura, dividindo as folhas em domínios menores, com grupos funcionais em sua borda e uma região interna praticamente livre de defeitos. Estas observações estão em concordância com experimentos em condições de processamento similares, sendo que uma análise qualitativa e quantitativa detalhada permitiu entender melhor o processo de pirólise.
id URGS_24085d4fe7890a4cb03a67ac1b63dd51
oai_identifier_str oai:www.lume.ufrgs.br:10183/179550
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Christmann, Augusto MohrMuniz, André Rodrigues2018-06-20T02:29:33Z2018http://hdl.handle.net/10183/179550001068128A pirólise de materiais tem sido usada para a produção de produtos de maior interesse, em busca de novas aplicações ou melhores propriedades que seu antecessor. Por exemplo, o tratamento térmico aplicado ao óxido de grafite é usado para a produção de óxido de grafeno reduzido, que apresenta propriedades e estrutura semelhantes ao grafeno, sendo este processo uma alternativa para sua produção em larga escala, com potencial aplicação em uma nova geração de dispositivos eletrônicos e nanocompósitos. Neste trabalho, simulações de dinâmica molecular reativa com o potencial reaxFF foram conduzidas para observar em nível atômico as mudanças estruturais e eventos reativos durante este processo, permitindo a identificação dos mecanismos principais envolvidos e um maior entendimento da dependência das condições de temperatura (de 800 a 3000 K) e pressão (ambiente, 2,5 e 7,7 GPa) usadas com as características do produtos formados. Para uma lâmina de óxido de grafeno isolada e para uma estrutura de óxido de grafite, buscou-se entender o efeito da temperatura e pressão aplicada na qualidade dos produtos formados, que vão desde folhas de óxido de grafeno reduzido até nanocristais de grafite, conforme observado em experimentos. As simulações mostram que o tratamento térmico causou uma conversão de seus grupos orgânicos iniciais (hidroxila/epóxi para carbonila/éter), liberação de moléculas gasosas (H2O, CO2 e H2), criação de defeitos e/ou reconstrução da estrutura grafítica. As reações são intensificadas com aumento da temperatura, e observa-se a presença de grupos oxigenados na estrutura resultante mesmo em altas temperaturas (3000 K). Em pressão ambiente os gases gerados causam a exfoliação das folhas e os grupos remanescentes causam defeitos isolados por toda a estrutura. Porém, em alta pressão (7,7 GPa) estas mantêm-se próximas, inibindo a formação de gases e aumentando a difusão dos grupos orgânicos pela superfície, que levam a formação de rasgos pela estrutura, dividindo as folhas em domínios menores, com grupos funcionais em sua borda e uma região interna praticamente livre de defeitos. Estas observações estão em concordância com experimentos em condições de processamento similares, sendo que uma análise qualitativa e quantitativa detalhada permitiu entender melhor o processo de pirólise.Pyrolysis can be used toward the conversion of conventional materials into new ones, aiming at an improvement of their properties, making them suitable for specific practical applications. For example, thermal annealing of graphite oxide (GO) can be used for the production of reduced graphene oxide sheets, which exhibit a structure and properties similar to graphene, and it is considered an interesting alternative to large-scale production. In this dissertation, reactive molecular dynamics simulations using the ReaxFF potential were carried out to study the thermal annealing of GO under high pressure. More specifically, to analyze the corresponding structural changes and reactive events at the atomic level, allowing the identification of the main mechanisms responsible for the transformations and a better understanding of the effect of applied temperature (from 800 to 3000 K) and pressure (ambient, 2.5 and 7.7 GPa) on the structural and morphological features of the formed products More specifically, we sought to understand the effect of temperature and pressure applied on graphite oxide on the quality of the formed products, which ranges from defected reduced graphene oxide sheets to graphite nanocrystals, as observed in experimental studies. The simulations show that thermal annealing caused an interconversion of its initial organic groups (hydroxyl/epoxy to carbonyl/ether), release of gaseous molecules (H2O, CO2 and H2), creation of defects and/or reconstruction of the graphitic structure. The reactions are intensified with increase of temperature, and the presence of oxygenated groups in the processed material is observed even at high temperatures. At ambient pressure, the generated gases cause the partial exfoliation of the sheets and the remaining groups appear as isolated defects throughout the structure. However, at the highest pressure (7.7 GPa) the layers become closer, inhibiting the formation of gases and increasing the surface diffusion of the organic groups, which lead to the tearing of the structure, dividing the sheet into smaller domains with functional groups on their edge, and an internal region free of defects. These observations are in agreement with the experiments in same processing conditions, and the detailed qualitative and quantitative analyses brought by the simulations allow a better understanding of the pyrolysis process.application/pdfporGrafenoDinâmica molecularTratamento térmicoEstudo da pirólise de óxido de grafite em altas pressões com dinâmica molecular reativainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulEscola de EngenhariaPrograma de Pós-Graduação em Engenharia QuímicaPorto Alegre, BR-RS2018mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001068128.pdf001068128.pdfTexto completoapplication/pdf8945368http://www.lume.ufrgs.br/bitstream/10183/179550/1/001068128.pdff7388f8a6740c9a3c494f8d105a59bcbMD51TEXT001068128.pdf.txt001068128.pdf.txtExtracted Texttext/plain312871http://www.lume.ufrgs.br/bitstream/10183/179550/2/001068128.pdf.txt02e2628e5a44a90c9f10ef9531284386MD5210183/1795502024-01-18 04:22:04.369676oai:www.lume.ufrgs.br:10183/179550Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-01-18T06:22:04Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Estudo da pirólise de óxido de grafite em altas pressões com dinâmica molecular reativa
title Estudo da pirólise de óxido de grafite em altas pressões com dinâmica molecular reativa
spellingShingle Estudo da pirólise de óxido de grafite em altas pressões com dinâmica molecular reativa
Christmann, Augusto Mohr
Grafeno
Dinâmica molecular
Tratamento térmico
title_short Estudo da pirólise de óxido de grafite em altas pressões com dinâmica molecular reativa
title_full Estudo da pirólise de óxido de grafite em altas pressões com dinâmica molecular reativa
title_fullStr Estudo da pirólise de óxido de grafite em altas pressões com dinâmica molecular reativa
title_full_unstemmed Estudo da pirólise de óxido de grafite em altas pressões com dinâmica molecular reativa
title_sort Estudo da pirólise de óxido de grafite em altas pressões com dinâmica molecular reativa
author Christmann, Augusto Mohr
author_facet Christmann, Augusto Mohr
author_role author
dc.contributor.author.fl_str_mv Christmann, Augusto Mohr
dc.contributor.advisor1.fl_str_mv Muniz, André Rodrigues
contributor_str_mv Muniz, André Rodrigues
dc.subject.por.fl_str_mv Grafeno
Dinâmica molecular
Tratamento térmico
topic Grafeno
Dinâmica molecular
Tratamento térmico
description A pirólise de materiais tem sido usada para a produção de produtos de maior interesse, em busca de novas aplicações ou melhores propriedades que seu antecessor. Por exemplo, o tratamento térmico aplicado ao óxido de grafite é usado para a produção de óxido de grafeno reduzido, que apresenta propriedades e estrutura semelhantes ao grafeno, sendo este processo uma alternativa para sua produção em larga escala, com potencial aplicação em uma nova geração de dispositivos eletrônicos e nanocompósitos. Neste trabalho, simulações de dinâmica molecular reativa com o potencial reaxFF foram conduzidas para observar em nível atômico as mudanças estruturais e eventos reativos durante este processo, permitindo a identificação dos mecanismos principais envolvidos e um maior entendimento da dependência das condições de temperatura (de 800 a 3000 K) e pressão (ambiente, 2,5 e 7,7 GPa) usadas com as características do produtos formados. Para uma lâmina de óxido de grafeno isolada e para uma estrutura de óxido de grafite, buscou-se entender o efeito da temperatura e pressão aplicada na qualidade dos produtos formados, que vão desde folhas de óxido de grafeno reduzido até nanocristais de grafite, conforme observado em experimentos. As simulações mostram que o tratamento térmico causou uma conversão de seus grupos orgânicos iniciais (hidroxila/epóxi para carbonila/éter), liberação de moléculas gasosas (H2O, CO2 e H2), criação de defeitos e/ou reconstrução da estrutura grafítica. As reações são intensificadas com aumento da temperatura, e observa-se a presença de grupos oxigenados na estrutura resultante mesmo em altas temperaturas (3000 K). Em pressão ambiente os gases gerados causam a exfoliação das folhas e os grupos remanescentes causam defeitos isolados por toda a estrutura. Porém, em alta pressão (7,7 GPa) estas mantêm-se próximas, inibindo a formação de gases e aumentando a difusão dos grupos orgânicos pela superfície, que levam a formação de rasgos pela estrutura, dividindo as folhas em domínios menores, com grupos funcionais em sua borda e uma região interna praticamente livre de defeitos. Estas observações estão em concordância com experimentos em condições de processamento similares, sendo que uma análise qualitativa e quantitativa detalhada permitiu entender melhor o processo de pirólise.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-06-20T02:29:33Z
dc.date.issued.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/179550
dc.identifier.nrb.pt_BR.fl_str_mv 001068128
url http://hdl.handle.net/10183/179550
identifier_str_mv 001068128
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/179550/1/001068128.pdf
http://www.lume.ufrgs.br/bitstream/10183/179550/2/001068128.pdf.txt
bitstream.checksum.fl_str_mv f7388f8a6740c9a3c494f8d105a59bcb
02e2628e5a44a90c9f10ef9531284386
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1797065103447687168