Utilização de simulação conjunta colocada com variável supersecundária para construção de modelo geometalúrgico de nióbio Araxá-MG

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Braga Júnior, José Marques
Orientador(a): Costa, Joao Felipe Coimbra Leite
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/164590
Resumo: Modelo de blocos para teor é um recurso comumente utilizado pelo planejamento de lavra na indústria mineira. Na maioria dos casos o conhecimento sobre os teores das variáveis químicas não é suficiente para prever o desempenho geometalúrgico do minério quando submetido ao processo de concentração. A geometalurgia engloba um conjunto de testes de comportamento metalúrgico do minério e seus resultados são incorporados ao modelo de bloco, ajudando a tornar o planejamento da lavra mais preciso quanto à capacidade de produção, melhorando os ganhos financeiros e reduzindo os riscos associados à lavra e a tomada de decisões. A recuperação metalúrgica de nióbio mede o quanto do conteúdo metálico de interesse no minério é recuperado no concentrado após o processamento mineral. Esta informação é muitas vezes subutilizada no modelo de bloco devido à baixa quantidade de dados primários, o que dificulta a construção de um modelo de bloco confiável. No entanto, para complementar a variável de interesse, informações secundárias de outros atributos podem ser utilizadas. A cossimulacão de informações não aditivas em depósitos multivariados com mais de duas variáveis secundárias envolvidas é extremamente trabalhosa e normalmente seus resultados precisam ser ajustados posteriormente. A necessidade de ajustes posteriores, aliada a falta de praticidade da maioria dos métodos de cossimulação, motiva a busca por solucões alternativas que gerem resultados tão ou mais precisos e que sejam de fácil aplicação na rotina de modelamento geológico. É comum que os programas utilizados para a cossimulação se baseiem em uma única variável secundária, porém, o fenômeno analisado pode estar sendo influenciado por vários fatores, neste caso, o uso combinado de todos fatores relevantes pode melhorar a predição da variável de interesse. O uso de múltiplas variáveis secundárias pode ser gerenciado criando-se uma variável supersecundária. Neste caso, a quimiometria pode ser aplicada, resolvendo problemas preditivos e modelando propriedades de sistemas químicos visando prever a recuperação metalúrgica. Nesse trabalho, após a combinação de múltiplas variáveis em um preditivo supersecundário, a cossimulação sequencial gaussiana foi aplicada para gerar o modelo geometalúrgico. A simulação conjunta colocada permite a simulação conjunta do dado supersecundário com o dado primário, integrando mais informações para melhorar a predição da recuperação metalúrgica do nióbio. A cossimulação foi realizada com base no modelo de corregionalização de Markov para simplificar a modelagem da covariância cruzada. O modelo probabilístico geometalúrgico obtido se mostrou eficiente, mantendo uma precisão adequada na previsão da variável de interesse.
id URGS_2530b7fa807b19013c39ff4a9ef41541
oai_identifier_str oai:www.lume.ufrgs.br:10183/164590
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Braga Júnior, José MarquesCosta, Joao Felipe Coimbra Leite2017-08-01T02:35:01Z2017http://hdl.handle.net/10183/164590001026796Modelo de blocos para teor é um recurso comumente utilizado pelo planejamento de lavra na indústria mineira. Na maioria dos casos o conhecimento sobre os teores das variáveis químicas não é suficiente para prever o desempenho geometalúrgico do minério quando submetido ao processo de concentração. A geometalurgia engloba um conjunto de testes de comportamento metalúrgico do minério e seus resultados são incorporados ao modelo de bloco, ajudando a tornar o planejamento da lavra mais preciso quanto à capacidade de produção, melhorando os ganhos financeiros e reduzindo os riscos associados à lavra e a tomada de decisões. A recuperação metalúrgica de nióbio mede o quanto do conteúdo metálico de interesse no minério é recuperado no concentrado após o processamento mineral. Esta informação é muitas vezes subutilizada no modelo de bloco devido à baixa quantidade de dados primários, o que dificulta a construção de um modelo de bloco confiável. No entanto, para complementar a variável de interesse, informações secundárias de outros atributos podem ser utilizadas. A cossimulacão de informações não aditivas em depósitos multivariados com mais de duas variáveis secundárias envolvidas é extremamente trabalhosa e normalmente seus resultados precisam ser ajustados posteriormente. A necessidade de ajustes posteriores, aliada a falta de praticidade da maioria dos métodos de cossimulação, motiva a busca por solucões alternativas que gerem resultados tão ou mais precisos e que sejam de fácil aplicação na rotina de modelamento geológico. É comum que os programas utilizados para a cossimulação se baseiem em uma única variável secundária, porém, o fenômeno analisado pode estar sendo influenciado por vários fatores, neste caso, o uso combinado de todos fatores relevantes pode melhorar a predição da variável de interesse. O uso de múltiplas variáveis secundárias pode ser gerenciado criando-se uma variável supersecundária. Neste caso, a quimiometria pode ser aplicada, resolvendo problemas preditivos e modelando propriedades de sistemas químicos visando prever a recuperação metalúrgica. Nesse trabalho, após a combinação de múltiplas variáveis em um preditivo supersecundário, a cossimulação sequencial gaussiana foi aplicada para gerar o modelo geometalúrgico. A simulação conjunta colocada permite a simulação conjunta do dado supersecundário com o dado primário, integrando mais informações para melhorar a predição da recuperação metalúrgica do nióbio. A cossimulação foi realizada com base no modelo de corregionalização de Markov para simplificar a modelagem da covariância cruzada. O modelo probabilístico geometalúrgico obtido se mostrou eficiente, mantendo uma precisão adequada na previsão da variável de interesse.Grade block models are a standard input in mine planning throughout the mining industry. In most cases, the ore grades knowledge is not enough to predict the behavior of the ore at the processing plant. Geometallurgy comprises a set of ore metallurgical behavior tests and their results incorporated into the block model, helping in making mine planning more precise when it comes to the production capacity, improving financial earnings and reducing risks. Niobium Metallurgical Recovery is a very important variable to be controlled, measuring how much of the metal content in the ore is recovered in the concentrate after mineral processing. This information is often underused in the block model due to the low quantity of primary data, which makes the construction of a reliable block model difficult. However, to supplement the variable of interest, secondary information from other attributes can be used. Cosimulation of non-additive information in multivariate deposits with more than two secondary variables involved is extremely labor-intensive and its results usually need to be later adjusted. The need for subsequent adjustments, combined with the lack of practicality of most cossimulation methods, motivates the search for alternative solutions that generate results that are as accurate and easy to apply in the routine of geological modeling in the mineral industry. In multivariate geostatistics most programs used for cosimulation are based on one secondary variables. Frequently the analyzed phenomenon is influenced by several factors. In this case, the use of them combined can improve the prediction of the variable of interest. The use of multiple secondary variables can be managed by creating a super-secondary variable. In this case, chemometrics can be applied, solving predictive problems, modeling properties of chemical systems aiming at predicting the metallurgical recovery. After combining multiple variables into a super-secondary predictive, Sequential Gaussian Cosimulation was applied in this study to generate a geometallurgical model. The collocated joint simulation allows the joint simulation of a super-secondary data with the primary data, integrating more information to improve the cosimulation of the niobium metallurgical recovery. The cosimulation was run based on the Markov coregionalization model to simplify the cross-covariance modeling. The result is a representative probabilistic geometallurgical model, which proved to be efficient maintaining an adequate precision in forecasting the predicted variable.application/pdfporGeoestatísticaLavra : PlanejamentoNióbioSimulação geoestatísticaUtilização de simulação conjunta colocada com variável supersecundária para construção de modelo geometalúrgico de nióbio Araxá-MGinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulEscola de EngenhariaPrograma de Pós-Graduação em Engenharia de Minas, Metalúrgica e de MateriaisPorto Alegre, BR-RS2017mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001026796.pdf001026796.pdfTexto completoapplication/pdf2295031http://www.lume.ufrgs.br/bitstream/10183/164590/1/001026796.pdfaae2316cd7b54ea1721f64b6a3895a77MD51TEXT001026796.pdf.txt001026796.pdf.txtExtracted Texttext/plain191818http://www.lume.ufrgs.br/bitstream/10183/164590/2/001026796.pdf.txt1ebb9a31ae850c0cdf2656a35fa6561aMD52THUMBNAIL001026796.pdf.jpg001026796.pdf.jpgGenerated Thumbnailimage/jpeg1396http://www.lume.ufrgs.br/bitstream/10183/164590/3/001026796.pdf.jpg1f2a64d88ce4fa99f841cea2ee806f62MD5310183/1645902018-10-17 08:45:52.172oai:www.lume.ufrgs.br:10183/164590Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-17T11:45:52Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Utilização de simulação conjunta colocada com variável supersecundária para construção de modelo geometalúrgico de nióbio Araxá-MG
title Utilização de simulação conjunta colocada com variável supersecundária para construção de modelo geometalúrgico de nióbio Araxá-MG
spellingShingle Utilização de simulação conjunta colocada com variável supersecundária para construção de modelo geometalúrgico de nióbio Araxá-MG
Braga Júnior, José Marques
Geoestatística
Lavra : Planejamento
Nióbio
Simulação geoestatística
title_short Utilização de simulação conjunta colocada com variável supersecundária para construção de modelo geometalúrgico de nióbio Araxá-MG
title_full Utilização de simulação conjunta colocada com variável supersecundária para construção de modelo geometalúrgico de nióbio Araxá-MG
title_fullStr Utilização de simulação conjunta colocada com variável supersecundária para construção de modelo geometalúrgico de nióbio Araxá-MG
title_full_unstemmed Utilização de simulação conjunta colocada com variável supersecundária para construção de modelo geometalúrgico de nióbio Araxá-MG
title_sort Utilização de simulação conjunta colocada com variável supersecundária para construção de modelo geometalúrgico de nióbio Araxá-MG
author Braga Júnior, José Marques
author_facet Braga Júnior, José Marques
author_role author
dc.contributor.author.fl_str_mv Braga Júnior, José Marques
dc.contributor.advisor1.fl_str_mv Costa, Joao Felipe Coimbra Leite
contributor_str_mv Costa, Joao Felipe Coimbra Leite
dc.subject.por.fl_str_mv Geoestatística
Lavra : Planejamento
Nióbio
Simulação geoestatística
topic Geoestatística
Lavra : Planejamento
Nióbio
Simulação geoestatística
description Modelo de blocos para teor é um recurso comumente utilizado pelo planejamento de lavra na indústria mineira. Na maioria dos casos o conhecimento sobre os teores das variáveis químicas não é suficiente para prever o desempenho geometalúrgico do minério quando submetido ao processo de concentração. A geometalurgia engloba um conjunto de testes de comportamento metalúrgico do minério e seus resultados são incorporados ao modelo de bloco, ajudando a tornar o planejamento da lavra mais preciso quanto à capacidade de produção, melhorando os ganhos financeiros e reduzindo os riscos associados à lavra e a tomada de decisões. A recuperação metalúrgica de nióbio mede o quanto do conteúdo metálico de interesse no minério é recuperado no concentrado após o processamento mineral. Esta informação é muitas vezes subutilizada no modelo de bloco devido à baixa quantidade de dados primários, o que dificulta a construção de um modelo de bloco confiável. No entanto, para complementar a variável de interesse, informações secundárias de outros atributos podem ser utilizadas. A cossimulacão de informações não aditivas em depósitos multivariados com mais de duas variáveis secundárias envolvidas é extremamente trabalhosa e normalmente seus resultados precisam ser ajustados posteriormente. A necessidade de ajustes posteriores, aliada a falta de praticidade da maioria dos métodos de cossimulação, motiva a busca por solucões alternativas que gerem resultados tão ou mais precisos e que sejam de fácil aplicação na rotina de modelamento geológico. É comum que os programas utilizados para a cossimulação se baseiem em uma única variável secundária, porém, o fenômeno analisado pode estar sendo influenciado por vários fatores, neste caso, o uso combinado de todos fatores relevantes pode melhorar a predição da variável de interesse. O uso de múltiplas variáveis secundárias pode ser gerenciado criando-se uma variável supersecundária. Neste caso, a quimiometria pode ser aplicada, resolvendo problemas preditivos e modelando propriedades de sistemas químicos visando prever a recuperação metalúrgica. Nesse trabalho, após a combinação de múltiplas variáveis em um preditivo supersecundário, a cossimulação sequencial gaussiana foi aplicada para gerar o modelo geometalúrgico. A simulação conjunta colocada permite a simulação conjunta do dado supersecundário com o dado primário, integrando mais informações para melhorar a predição da recuperação metalúrgica do nióbio. A cossimulação foi realizada com base no modelo de corregionalização de Markov para simplificar a modelagem da covariância cruzada. O modelo probabilístico geometalúrgico obtido se mostrou eficiente, mantendo uma precisão adequada na previsão da variável de interesse.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-08-01T02:35:01Z
dc.date.issued.fl_str_mv 2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/164590
dc.identifier.nrb.pt_BR.fl_str_mv 001026796
url http://hdl.handle.net/10183/164590
identifier_str_mv 001026796
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/164590/1/001026796.pdf
http://www.lume.ufrgs.br/bitstream/10183/164590/2/001026796.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/164590/3/001026796.pdf.jpg
bitstream.checksum.fl_str_mv aae2316cd7b54ea1721f64b6a3895a77
1ebb9a31ae850c0cdf2656a35fa6561a
1f2a64d88ce4fa99f841cea2ee806f62
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831316023548051456