A dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platforms
| Ano de defesa: | 2011 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | http://hdl.handle.net/10183/34768 |
Resumo: | Atualmente, o computador pessoal (PC) moderno poder ser considerado como um cluster heterogênedo de um nodo, o qual processa simultâneamente inúmeras tarefas provenientes das aplicações. O PC pode ser composto por Unidades de Processamento (PUs) assimétricas, como a Unidade Central de Processamento (CPU), composta de múltiplos núcleos, a Unidade de Processamento Gráfico (GPU), composta por inúmeros núcleos e que tem sido um dos principais co-processadores que contribuiram para a computação de alto desempenho em PCs, entre outras. Neste sentido, uma plataforma de execução heterogênea é formada em um PC para efetuar cálculos intensivos em um grande número de dados. Na perspectiva desta tese, a distribuição da carga de trabalho de uma aplicação nas PUs é um fator importante para melhorar o desempenho das aplicações e explorar tal heterogeneidade. Esta questão apresenta desafios uma vez que o custo de execução de uma tarefa de alto nível em uma PU é não-determinístico e pode ser afetado por uma série de parâmetros não conhecidos a priori, como o tamanho do domínio do problema e a precisão da solução, entre outros. Nesse escopo, esta pesquisa de doutorado apresenta um sistema sensível ao contexto e de adaptação em tempo de execução com base em um compromisso entre a redução do tempo de execução das aplicações - devido a um escalonamento dinâmico adequado de tarefas de alto nível - e o custo de computação do próprio escalonamento aplicados em uma plataforma composta de CPU e GPU. Esta abordagem combina um modelo para um primeiro escalonamento baseado em perfis de desempenho adquiridos em préprocessamento com um modelo online, o qual mantém o controle do tempo de execução real de novas tarefas e escalona dinâmicamente e de modo eficaz novas instâncias das tarefas de alto nível em uma plataforma de execução composta de CPU e de GPU. Para isso, é proposto um conjunto de heurísticas para escalonar tarefas em uma CPU e uma GPU e uma estratégia genérica e eficiente de escalonamento que considera várias unidades de processamento. A abordagem proposta é aplicada em um estudo de caso utilizando uma plataforma de execução composta por CPU e GPU para computação de métodos iterativos focados na solução de Sistemas de Equações Lineares que se utilizam de um cálculo de stencil especialmente concebido para explorar as características das GPUs modernas. A solução utiliza o número de incógnitas como o principal parâmetro para a decisão de escalonamento. Ao escalonar tarefas para a CPU e para a GPU, um ganho de 21,77% em desempenho é obtido em comparação com o escalonamento estático de todas as tarefas para a GPU (o qual é utilizado por modelos de programação atuais, como OpenCL e CUDA para Nvidia) com um erro de escalonamento de apenas 0,25% em relação à combinação exaustiva. |
| id |
URGS_2f8969489246df0e7b2585731fb2f179 |
|---|---|
| oai_identifier_str |
oai:www.lume.ufrgs.br:10183/34768 |
| network_acronym_str |
URGS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| repository_id_str |
|
| spelling |
Binotto, Alécio Pedro DelazariPereira, Carlos EduardoFellner, Dieter W.2011-11-23T01:20:01Z2011http://hdl.handle.net/10183/34768000792445Atualmente, o computador pessoal (PC) moderno poder ser considerado como um cluster heterogênedo de um nodo, o qual processa simultâneamente inúmeras tarefas provenientes das aplicações. O PC pode ser composto por Unidades de Processamento (PUs) assimétricas, como a Unidade Central de Processamento (CPU), composta de múltiplos núcleos, a Unidade de Processamento Gráfico (GPU), composta por inúmeros núcleos e que tem sido um dos principais co-processadores que contribuiram para a computação de alto desempenho em PCs, entre outras. Neste sentido, uma plataforma de execução heterogênea é formada em um PC para efetuar cálculos intensivos em um grande número de dados. Na perspectiva desta tese, a distribuição da carga de trabalho de uma aplicação nas PUs é um fator importante para melhorar o desempenho das aplicações e explorar tal heterogeneidade. Esta questão apresenta desafios uma vez que o custo de execução de uma tarefa de alto nível em uma PU é não-determinístico e pode ser afetado por uma série de parâmetros não conhecidos a priori, como o tamanho do domínio do problema e a precisão da solução, entre outros. Nesse escopo, esta pesquisa de doutorado apresenta um sistema sensível ao contexto e de adaptação em tempo de execução com base em um compromisso entre a redução do tempo de execução das aplicações - devido a um escalonamento dinâmico adequado de tarefas de alto nível - e o custo de computação do próprio escalonamento aplicados em uma plataforma composta de CPU e GPU. Esta abordagem combina um modelo para um primeiro escalonamento baseado em perfis de desempenho adquiridos em préprocessamento com um modelo online, o qual mantém o controle do tempo de execução real de novas tarefas e escalona dinâmicamente e de modo eficaz novas instâncias das tarefas de alto nível em uma plataforma de execução composta de CPU e de GPU. Para isso, é proposto um conjunto de heurísticas para escalonar tarefas em uma CPU e uma GPU e uma estratégia genérica e eficiente de escalonamento que considera várias unidades de processamento. A abordagem proposta é aplicada em um estudo de caso utilizando uma plataforma de execução composta por CPU e GPU para computação de métodos iterativos focados na solução de Sistemas de Equações Lineares que se utilizam de um cálculo de stencil especialmente concebido para explorar as características das GPUs modernas. A solução utiliza o número de incógnitas como o principal parâmetro para a decisão de escalonamento. Ao escalonar tarefas para a CPU e para a GPU, um ganho de 21,77% em desempenho é obtido em comparação com o escalonamento estático de todas as tarefas para a GPU (o qual é utilizado por modelos de programação atuais, como OpenCL e CUDA para Nvidia) com um erro de escalonamento de apenas 0,25% em relação à combinação exaustiva.A modern personal computer can be now considered as a one-node heterogeneous cluster that simultaneously processes several applications’ tasks. It can be composed by asymmetric Processing Units (PUs), like the multi-core Central Processing Unit (CPU), the many-core Graphics Processing Units (GPUs) - which have become one of the main co-processors that contributed towards high performance computing - and other PUs. This way, a powerful heterogeneous execution platform is built on a desktop for data intensive calculations. In the perspective of this thesis, to improve the performance of applications and explore such heterogeneity, a workload distribution over the PUs plays a key role in such systems. This issue presents challenges since the execution cost of a task at a PU is non-deterministic and can be affected by a number of parameters not known a priori, like the problem size domain and the precision of the solution, among others. Within this scope, this doctoral research introduces a context-aware runtime and performance tuning system based on a compromise between reducing the execution time of the applications - due to appropriate dynamic scheduling of high-level tasks - and the cost of computing such scheduling applied on a platform composed of CPU and GPUs. This approach combines a model for a first scheduling based on an off-line task performance profile benchmark with a runtime model that keeps track of the tasks’ real execution time and efficiently schedules new instances of the high-level tasks dynamically over the CPU/GPU execution platform. For that, it is proposed a set of heuristics to schedule tasks over one CPU and one GPU and a generic and efficient scheduling strategy that considers several processing units. The proposed approach is applied in a case study using a CPU-GPU execution platform for computing iterative solvers for Systems of Linear Equations using a stencil code specially designed to explore the characteristics of modern GPUs. The solution uses the number of unknowns as the main parameter for assignment decision. By scheduling tasks to the CPU and to the GPU, it is achieved a performance gain of 21.77% in comparison to the static assignment of all tasks to the GPU (which is done by current programming models, such as OpenCL and CUDA for Nvidia) with a scheduling error of only 0.25% compared to exhaustive search.application/pdfengProcessamento paraleloMicroeletrônicaProcessamento de imagensProcessamento : Alto desempenhoHigh-performance computingSchedulingDynamic load-balancingHeterogenous systemsGraphics processorsSolvers for systems of linear equationsA dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platformsUm sistema de escalonamento dinâmico e tuning em tempo de execução para plataformas desktop heterogêneas de múltiplos núcleos info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2011doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000792445.pdf000792445.pdfTexto completo (inglês)application/pdf2144765http://www.lume.ufrgs.br/bitstream/10183/34768/1/000792445.pdf8bd446a2159110c62b21224ba4d31f39MD51TEXT000792445.pdf.txt000792445.pdf.txtExtracted Texttext/plain283683http://www.lume.ufrgs.br/bitstream/10183/34768/2/000792445.pdf.txt5e19ac14e95780d7e6748ee083e82a0eMD52THUMBNAIL000792445.pdf.jpg000792445.pdf.jpgGenerated Thumbnailimage/jpeg1090http://www.lume.ufrgs.br/bitstream/10183/34768/3/000792445.pdf.jpg28eb55bdf6eaa4d3079c6cccefd48769MD5310183/347682021-05-26 04:30:27.837377oai:www.lume.ufrgs.br:10183/34768Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:30:27Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
| dc.title.pt_BR.fl_str_mv |
A dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platforms |
| dc.title.alternative.en.fl_str_mv |
Um sistema de escalonamento dinâmico e tuning em tempo de execução para plataformas desktop heterogêneas de múltiplos núcleos |
| title |
A dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platforms |
| spellingShingle |
A dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platforms Binotto, Alécio Pedro Delazari Processamento paralelo Microeletrônica Processamento de imagens Processamento : Alto desempenho High-performance computing Scheduling Dynamic load-balancing Heterogenous systems Graphics processors Solvers for systems of linear equations |
| title_short |
A dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platforms |
| title_full |
A dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platforms |
| title_fullStr |
A dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platforms |
| title_full_unstemmed |
A dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platforms |
| title_sort |
A dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platforms |
| author |
Binotto, Alécio Pedro Delazari |
| author_facet |
Binotto, Alécio Pedro Delazari |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Binotto, Alécio Pedro Delazari |
| dc.contributor.advisor1.fl_str_mv |
Pereira, Carlos Eduardo |
| dc.contributor.advisor-co1.fl_str_mv |
Fellner, Dieter W. |
| contributor_str_mv |
Pereira, Carlos Eduardo Fellner, Dieter W. |
| dc.subject.por.fl_str_mv |
Processamento paralelo Microeletrônica Processamento de imagens Processamento : Alto desempenho |
| topic |
Processamento paralelo Microeletrônica Processamento de imagens Processamento : Alto desempenho High-performance computing Scheduling Dynamic load-balancing Heterogenous systems Graphics processors Solvers for systems of linear equations |
| dc.subject.eng.fl_str_mv |
High-performance computing Scheduling Dynamic load-balancing Heterogenous systems Graphics processors Solvers for systems of linear equations |
| description |
Atualmente, o computador pessoal (PC) moderno poder ser considerado como um cluster heterogênedo de um nodo, o qual processa simultâneamente inúmeras tarefas provenientes das aplicações. O PC pode ser composto por Unidades de Processamento (PUs) assimétricas, como a Unidade Central de Processamento (CPU), composta de múltiplos núcleos, a Unidade de Processamento Gráfico (GPU), composta por inúmeros núcleos e que tem sido um dos principais co-processadores que contribuiram para a computação de alto desempenho em PCs, entre outras. Neste sentido, uma plataforma de execução heterogênea é formada em um PC para efetuar cálculos intensivos em um grande número de dados. Na perspectiva desta tese, a distribuição da carga de trabalho de uma aplicação nas PUs é um fator importante para melhorar o desempenho das aplicações e explorar tal heterogeneidade. Esta questão apresenta desafios uma vez que o custo de execução de uma tarefa de alto nível em uma PU é não-determinístico e pode ser afetado por uma série de parâmetros não conhecidos a priori, como o tamanho do domínio do problema e a precisão da solução, entre outros. Nesse escopo, esta pesquisa de doutorado apresenta um sistema sensível ao contexto e de adaptação em tempo de execução com base em um compromisso entre a redução do tempo de execução das aplicações - devido a um escalonamento dinâmico adequado de tarefas de alto nível - e o custo de computação do próprio escalonamento aplicados em uma plataforma composta de CPU e GPU. Esta abordagem combina um modelo para um primeiro escalonamento baseado em perfis de desempenho adquiridos em préprocessamento com um modelo online, o qual mantém o controle do tempo de execução real de novas tarefas e escalona dinâmicamente e de modo eficaz novas instâncias das tarefas de alto nível em uma plataforma de execução composta de CPU e de GPU. Para isso, é proposto um conjunto de heurísticas para escalonar tarefas em uma CPU e uma GPU e uma estratégia genérica e eficiente de escalonamento que considera várias unidades de processamento. A abordagem proposta é aplicada em um estudo de caso utilizando uma plataforma de execução composta por CPU e GPU para computação de métodos iterativos focados na solução de Sistemas de Equações Lineares que se utilizam de um cálculo de stencil especialmente concebido para explorar as características das GPUs modernas. A solução utiliza o número de incógnitas como o principal parâmetro para a decisão de escalonamento. Ao escalonar tarefas para a CPU e para a GPU, um ganho de 21,77% em desempenho é obtido em comparação com o escalonamento estático de todas as tarefas para a GPU (o qual é utilizado por modelos de programação atuais, como OpenCL e CUDA para Nvidia) com um erro de escalonamento de apenas 0,25% em relação à combinação exaustiva. |
| publishDate |
2011 |
| dc.date.accessioned.fl_str_mv |
2011-11-23T01:20:01Z |
| dc.date.issued.fl_str_mv |
2011 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/34768 |
| dc.identifier.nrb.pt_BR.fl_str_mv |
000792445 |
| url |
http://hdl.handle.net/10183/34768 |
| identifier_str_mv |
000792445 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
| instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
| instacron_str |
UFRGS |
| institution |
UFRGS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/34768/1/000792445.pdf http://www.lume.ufrgs.br/bitstream/10183/34768/2/000792445.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/34768/3/000792445.pdf.jpg |
| bitstream.checksum.fl_str_mv |
8bd446a2159110c62b21224ba4d31f39 5e19ac14e95780d7e6748ee083e82a0e 28eb55bdf6eaa4d3079c6cccefd48769 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
| repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
| _version_ |
1831315901674160128 |