Atlantic : a framework for anomaly traffic detection, classification, and mitigation in SDN

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Silva, Anderson Santos da
Orientador(a): Schaeffer Filho, Alberto Egon
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/148594
Resumo: Software-Defined Networking (SDN) objetiva aliviar as limitações impostas por redes IP tradicionais dissociando tarefas de rede executadas em cada dispositivo em planos específicos. Esta abordagem oferece vários benefícios, tais como a possibilidade de uso de protocolos de comunicação padrão, funções de rede centralizadas, e elementos de rede mais específicos e modulares, tais como controladores de rede. Apesar destes benefícios, ainda há uma falta de apoio adequado para a realização de tarefas relacionadas à classificação de tráfego, pois (i) as características de fluxo nativas disponíveis no protocolo OpenFlow, tais como contadores de bytes e pacotes, não oferecem informação suficiente para distinguir de forma precisa fluxos específicos; (ii) existe uma falta de suporte para determinar qual é o conjunto ótimo de características de fluxo para caracterizar um dado perfil de tráfego; (iii) existe uma necessidade de estratégias flexíveis para compor diferentes mecanismos relacionados à detecção, classificação e mitigação de anomalias de rede usando abstrações de software; (iv) existe uma necessidade de monitoramento de tráfego em tempo real usando técnicas leves e de baixo custo; (v) não existe um framework capaz de gerenciar detecção, classificação e mitigação de anomalias de uma forma coordenada considerando todas as demandas acima. Adicionalmente, é sabido que mecanismos de detecção e classificação de anomalias de tráfego precisam ser flexíveis e fáceis de administrar, a fim de detectar o crescente espectro de anomalias. Detecção e classificação são tarefas difíceis por causa de várias razões, incluindo a necessidade de obter uma visão precisa e abrangente da rede, a capacidade de detectar a ocorrência de novos tipos de ataque, e a necessidade de lidar com erros de classificação. Nesta dissertação, argumentamos que SDN oferece ambientes propícios para a concepção e implementação de esquemas mais robustos e extensíveis para detecção e classificação de anomalias. Diferentemente de outras abordagens na literatura relacionada, que abordam individualmente detecção ou classificação ou mitigação de anomalias, apresentamos um framework para o gerenciamento e orquestração dessas tarefas em conjunto. O framework proposto é denominado ATLANTIC e combina o uso de técnicas com baixo custo computacional para monitorar tráfego e técnicas mais computacionalmente intensivas, porém precisas, para classificar os fluxos de tráfego. Como resultado, ATLANTIC é um framework flexível capaz de categorizar anomalias de tráfego utilizando informações coletadas da rede para lidar com cada perfil de tráfego de um modo específico, como por exemplo, bloqueando fluxos maliciosos.
id URGS_48adfb0cd9f36fe57efa85d3343e5a8a
oai_identifier_str oai:www.lume.ufrgs.br:10183/148594
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Silva, Anderson Santos daSchaeffer Filho, Alberto Egon2016-09-28T02:15:23Z2015http://hdl.handle.net/10183/148594001002747Software-Defined Networking (SDN) objetiva aliviar as limitações impostas por redes IP tradicionais dissociando tarefas de rede executadas em cada dispositivo em planos específicos. Esta abordagem oferece vários benefícios, tais como a possibilidade de uso de protocolos de comunicação padrão, funções de rede centralizadas, e elementos de rede mais específicos e modulares, tais como controladores de rede. Apesar destes benefícios, ainda há uma falta de apoio adequado para a realização de tarefas relacionadas à classificação de tráfego, pois (i) as características de fluxo nativas disponíveis no protocolo OpenFlow, tais como contadores de bytes e pacotes, não oferecem informação suficiente para distinguir de forma precisa fluxos específicos; (ii) existe uma falta de suporte para determinar qual é o conjunto ótimo de características de fluxo para caracterizar um dado perfil de tráfego; (iii) existe uma necessidade de estratégias flexíveis para compor diferentes mecanismos relacionados à detecção, classificação e mitigação de anomalias de rede usando abstrações de software; (iv) existe uma necessidade de monitoramento de tráfego em tempo real usando técnicas leves e de baixo custo; (v) não existe um framework capaz de gerenciar detecção, classificação e mitigação de anomalias de uma forma coordenada considerando todas as demandas acima. Adicionalmente, é sabido que mecanismos de detecção e classificação de anomalias de tráfego precisam ser flexíveis e fáceis de administrar, a fim de detectar o crescente espectro de anomalias. Detecção e classificação são tarefas difíceis por causa de várias razões, incluindo a necessidade de obter uma visão precisa e abrangente da rede, a capacidade de detectar a ocorrência de novos tipos de ataque, e a necessidade de lidar com erros de classificação. Nesta dissertação, argumentamos que SDN oferece ambientes propícios para a concepção e implementação de esquemas mais robustos e extensíveis para detecção e classificação de anomalias. Diferentemente de outras abordagens na literatura relacionada, que abordam individualmente detecção ou classificação ou mitigação de anomalias, apresentamos um framework para o gerenciamento e orquestração dessas tarefas em conjunto. O framework proposto é denominado ATLANTIC e combina o uso de técnicas com baixo custo computacional para monitorar tráfego e técnicas mais computacionalmente intensivas, porém precisas, para classificar os fluxos de tráfego. Como resultado, ATLANTIC é um framework flexível capaz de categorizar anomalias de tráfego utilizando informações coletadas da rede para lidar com cada perfil de tráfego de um modo específico, como por exemplo, bloqueando fluxos maliciosos.Software-Defined Networking (SDN) aims to alleviate the limitations imposed by traditional IP networks by decoupling network tasks performed on each device in particular planes. This approach offers several benefits, such as standard communication protocols, centralized network functions, and specific network elements, such as controller devices. Despite these benefits, there is still a lack of adequate support for performing tasks related to traffic classification, because (i) the native flow features available in OpenFlow, such as packet and byte counts, do not convey sufficient information to accurately distinguish between some types of flows; (ii) there is a lack of support to determine what is the optimal set of flow features to characterize different types of traffic profiles; (iii) there is a need for a flexible way of composing different mechanisms to detect, classify and mitigate network anomalies using software abstractions; (iv) there is a need of online traffic monitoring using lightweight/low-cost techniques; (v) there is no framework capable of managing anomaly detection, classification and mitigation in a coordinated manner and considering all these demands. Additionally, it is well-known that anomaly traffic detection and classification mechanisms need to be flexible and easy to manage in order to detect the ever growing spectrum of anomalies. Detection and classification are difficult tasks because of several reasons, including the need to obtain an accurate and comprehensive view of the network, the ability to detect the occurrence of new attack types, and the need to deal with misclassification. In this dissertation, we argue that Software-Defined Networking (SDN) form propitious environments for the design and implementation of more robust and extensible anomaly classification schemes. Different from other approaches from the literature, which individually tackle either anomaly detection or classification or mitigation, we present a management framework to perform these tasks jointly. Our proposed framework is called ATLANTIC and it combines the use of lightweight techniques for traffic monitoring and heavyweight, but accurate, techniques to classify traffic flows. As a result, ATLANTIC is a flexible framework capable of categorizing traffic anomalies and using the information collected to handle each traffic profile in a specific manner, e.g., blocking malicious flows.application/pdfengRedes : ComputadoresTrafego : Redes : ComputadoresGerencia : Redes : ComputadoresAnomaly detectionTraffic classificationTraffic monitoringManagement frameworkMachine learningAtlantic : a framework for anomaly traffic detection, classification, and mitigation in SDNAtlantic : um framework para detecção, classificação e mitigação de tráfego anômalo em SDNinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2015mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001002747.pdf001002747.pdfTexto completo (inglês)application/pdf7056647http://www.lume.ufrgs.br/bitstream/10183/148594/1/001002747.pdf9c6085096bc5682bc830f2a678ae88c9MD51TEXT001002747.pdf.txt001002747.pdf.txtExtracted Texttext/plain387798http://www.lume.ufrgs.br/bitstream/10183/148594/2/001002747.pdf.txtb83aa6aac86fadeaf59fdb2f22f8f797MD52THUMBNAIL001002747.pdf.jpg001002747.pdf.jpgGenerated Thumbnailimage/jpeg1091http://www.lume.ufrgs.br/bitstream/10183/148594/3/001002747.pdf.jpg0dfe30c149c499d64e891430aedc59ffMD5310183/1485942021-05-26 04:39:50.303212oai:www.lume.ufrgs.br:10183/148594Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:39:50Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Atlantic : a framework for anomaly traffic detection, classification, and mitigation in SDN
dc.title.alternative.pt.fl_str_mv Atlantic : um framework para detecção, classificação e mitigação de tráfego anômalo em SDN
title Atlantic : a framework for anomaly traffic detection, classification, and mitigation in SDN
spellingShingle Atlantic : a framework for anomaly traffic detection, classification, and mitigation in SDN
Silva, Anderson Santos da
Redes : Computadores
Trafego : Redes : Computadores
Gerencia : Redes : Computadores
Anomaly detection
Traffic classification
Traffic monitoring
Management framework
Machine learning
title_short Atlantic : a framework for anomaly traffic detection, classification, and mitigation in SDN
title_full Atlantic : a framework for anomaly traffic detection, classification, and mitigation in SDN
title_fullStr Atlantic : a framework for anomaly traffic detection, classification, and mitigation in SDN
title_full_unstemmed Atlantic : a framework for anomaly traffic detection, classification, and mitigation in SDN
title_sort Atlantic : a framework for anomaly traffic detection, classification, and mitigation in SDN
author Silva, Anderson Santos da
author_facet Silva, Anderson Santos da
author_role author
dc.contributor.author.fl_str_mv Silva, Anderson Santos da
dc.contributor.advisor1.fl_str_mv Schaeffer Filho, Alberto Egon
contributor_str_mv Schaeffer Filho, Alberto Egon
dc.subject.por.fl_str_mv Redes : Computadores
Trafego : Redes : Computadores
Gerencia : Redes : Computadores
topic Redes : Computadores
Trafego : Redes : Computadores
Gerencia : Redes : Computadores
Anomaly detection
Traffic classification
Traffic monitoring
Management framework
Machine learning
dc.subject.eng.fl_str_mv Anomaly detection
Traffic classification
Traffic monitoring
Management framework
Machine learning
description Software-Defined Networking (SDN) objetiva aliviar as limitações impostas por redes IP tradicionais dissociando tarefas de rede executadas em cada dispositivo em planos específicos. Esta abordagem oferece vários benefícios, tais como a possibilidade de uso de protocolos de comunicação padrão, funções de rede centralizadas, e elementos de rede mais específicos e modulares, tais como controladores de rede. Apesar destes benefícios, ainda há uma falta de apoio adequado para a realização de tarefas relacionadas à classificação de tráfego, pois (i) as características de fluxo nativas disponíveis no protocolo OpenFlow, tais como contadores de bytes e pacotes, não oferecem informação suficiente para distinguir de forma precisa fluxos específicos; (ii) existe uma falta de suporte para determinar qual é o conjunto ótimo de características de fluxo para caracterizar um dado perfil de tráfego; (iii) existe uma necessidade de estratégias flexíveis para compor diferentes mecanismos relacionados à detecção, classificação e mitigação de anomalias de rede usando abstrações de software; (iv) existe uma necessidade de monitoramento de tráfego em tempo real usando técnicas leves e de baixo custo; (v) não existe um framework capaz de gerenciar detecção, classificação e mitigação de anomalias de uma forma coordenada considerando todas as demandas acima. Adicionalmente, é sabido que mecanismos de detecção e classificação de anomalias de tráfego precisam ser flexíveis e fáceis de administrar, a fim de detectar o crescente espectro de anomalias. Detecção e classificação são tarefas difíceis por causa de várias razões, incluindo a necessidade de obter uma visão precisa e abrangente da rede, a capacidade de detectar a ocorrência de novos tipos de ataque, e a necessidade de lidar com erros de classificação. Nesta dissertação, argumentamos que SDN oferece ambientes propícios para a concepção e implementação de esquemas mais robustos e extensíveis para detecção e classificação de anomalias. Diferentemente de outras abordagens na literatura relacionada, que abordam individualmente detecção ou classificação ou mitigação de anomalias, apresentamos um framework para o gerenciamento e orquestração dessas tarefas em conjunto. O framework proposto é denominado ATLANTIC e combina o uso de técnicas com baixo custo computacional para monitorar tráfego e técnicas mais computacionalmente intensivas, porém precisas, para classificar os fluxos de tráfego. Como resultado, ATLANTIC é um framework flexível capaz de categorizar anomalias de tráfego utilizando informações coletadas da rede para lidar com cada perfil de tráfego de um modo específico, como por exemplo, bloqueando fluxos maliciosos.
publishDate 2015
dc.date.issued.fl_str_mv 2015
dc.date.accessioned.fl_str_mv 2016-09-28T02:15:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/148594
dc.identifier.nrb.pt_BR.fl_str_mv 001002747
url http://hdl.handle.net/10183/148594
identifier_str_mv 001002747
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/148594/1/001002747.pdf
http://www.lume.ufrgs.br/bitstream/10183/148594/2/001002747.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/148594/3/001002747.pdf.jpg
bitstream.checksum.fl_str_mv 9c6085096bc5682bc830f2a678ae88c9
b83aa6aac86fadeaf59fdb2f22f8f797
0dfe30c149c499d64e891430aedc59ff
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831316002360524800