Exportação concluída — 

Sequencing operator counts with state-space search

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Kaizer, Wesley Luciano
Orientador(a): Pereira, André Grahl
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/211457
Resumo: A search algorithm with an admissible heuristic function is the most common approach to optimally solve classical planning tasks. Recently DAVIES et al. (2015) introduced the solver OpSeq using Logic-Based Benders Decomposition. In this approach to planning, the master problem is an integer program derived from the operator-counting framework that generates operator counts, i.e., an assignment of integer counts for each task operator. Then, the operator counts sequencing subproblem verifies if a plan satisfying these operator counts exists, or generates a violated constraint to strengthen the master problem. In OpSeq, the subproblem is solved by a SAT solver. In this thesis, we show that this subproblem can be better solved by state-space search. We introduce OpSearch, an A -based algorithm to solve the operator counts sequencing problem: it either finds an optimal plan, or uses the frontier of the search, i.e., the set of generated but yet unexpanded states, to derive a violated constraint. We show that using a standard search framework has three advantages: i) the search scales better than a SAT-based approach for solving the operator counts sequencing, ii) explicit information in the search frontier can be used to derive stronger constraints, and iii) stronger heuristics generate more informed constraints. We present results using the benchmark of the International Planning Competition, showing that this approach solves more planning tasks, using less memory. On tasks solved by both methods, OpSearch usually requires solving fewer operator counts sequencing problems than OpSeq, evidencing the stronger constraints generated by OpSearch.
id URGS_571b42fc1fd656f25d28842e4ec4d103
oai_identifier_str oai:www.lume.ufrgs.br:10183/211457
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Kaizer, Wesley LucianoPereira, André Grahl2020-07-08T03:42:20Z2020http://hdl.handle.net/10183/211457001115568A search algorithm with an admissible heuristic function is the most common approach to optimally solve classical planning tasks. Recently DAVIES et al. (2015) introduced the solver OpSeq using Logic-Based Benders Decomposition. In this approach to planning, the master problem is an integer program derived from the operator-counting framework that generates operator counts, i.e., an assignment of integer counts for each task operator. Then, the operator counts sequencing subproblem verifies if a plan satisfying these operator counts exists, or generates a violated constraint to strengthen the master problem. In OpSeq, the subproblem is solved by a SAT solver. In this thesis, we show that this subproblem can be better solved by state-space search. We introduce OpSearch, an A -based algorithm to solve the operator counts sequencing problem: it either finds an optimal plan, or uses the frontier of the search, i.e., the set of generated but yet unexpanded states, to derive a violated constraint. We show that using a standard search framework has three advantages: i) the search scales better than a SAT-based approach for solving the operator counts sequencing, ii) explicit information in the search frontier can be used to derive stronger constraints, and iii) stronger heuristics generate more informed constraints. We present results using the benchmark of the International Planning Competition, showing that this approach solves more planning tasks, using less memory. On tasks solved by both methods, OpSearch usually requires solving fewer operator counts sequencing problems than OpSeq, evidencing the stronger constraints generated by OpSearch.Um algoritmo de busca com uma função heurística admissível é a abordagem mais comum para resolver otimamente tarefas de planejamento. Recentemente DAVIES et al. (2015) introduziram o resolvedor OpSeq usando uma Decomposição de Benders Baseada em Lógica. Nesta abordagem para planejamento, o problema principal é um programa inteiro derivado da estrutura de operator-counting que gera contagens de operadores, isto é, uma atribuição de contagens inteiras para cada operador da tarefa. Em seguida, o problema de sequenciamento de contagens de operadores verifica se um plano satisfazendo estas contagens de operadores existe, ou gera uma restrição violada para fortificar o problema principal. Em OpSeq, o subproblema é resolvido por um resolvedor SAT. Nesta dissertação, mostramos que este subproblema pode ser melhor resolvido por busca em espaço de estados. Introduzimos OpSearch, um algoritmo baseado em A para resolver o problema de sequenciamento de contagens de operadores: ele encontra um plano ótimo, ou usa a fronteira da busca, isto é, o conjunto de estados gerados mas ainda não expandidos, para derivar uma restrição violada. Mostramos que utilizar uma estrutura de busca padrão tem três vantagens: i) a busca escala melhor que uma abordagem baseada em SAT para resolver o sequenciamento de contagens de operadores, ii) informação explícita na fronteira de busca pode ser usada para derivar restrições mais fortes, e iii) heurísticas mais fortes geram restrições mais informadas. Apresentamos resultados utilizando o conjunto de instâncias da Competição Internacional de Planejamento, mostrando que esta abordagem resolve mais tarefas de planejamento, usando menos memória. Nas tarefas resolvidas por ambos os métodos, OpSearch geralmente requer resolver menos problemas de sequenciamento de contagens de operadores que OpSeq, evidenciando as restrições mais fortes geradas por OpSearch.application/pdfengInteligência artificialBusca heurísticaAlgoritmosComplexidade computacionalClassical planningState-space heuristic searchInteger programmingOperator-counting frameworkSequencing operator counts with state-space searchSequenciamento de contagens de operadores com busca em espaço de estados info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2020mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001115568.pdf.txt001115568.pdf.txtExtracted Texttext/plain121811http://www.lume.ufrgs.br/bitstream/10183/211457/2/001115568.pdf.txt8c98ddf30a1e788c40bb27c97855f019MD52ORIGINAL001115568.pdfTexto completo (inglês)application/pdf689467http://www.lume.ufrgs.br/bitstream/10183/211457/1/001115568.pdf042d363a4b0c91cbecde60e9ea42c20eMD5110183/2114572024-05-15 05:41:10.379574oai:www.lume.ufrgs.br:10183/211457Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-05-15T08:41:10Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Sequencing operator counts with state-space search
dc.title.alternative.pt.fl_str_mv Sequenciamento de contagens de operadores com busca em espaço de estados
title Sequencing operator counts with state-space search
spellingShingle Sequencing operator counts with state-space search
Kaizer, Wesley Luciano
Inteligência artificial
Busca heurística
Algoritmos
Complexidade computacional
Classical planning
State-space heuristic search
Integer programming
Operator-counting framework
title_short Sequencing operator counts with state-space search
title_full Sequencing operator counts with state-space search
title_fullStr Sequencing operator counts with state-space search
title_full_unstemmed Sequencing operator counts with state-space search
title_sort Sequencing operator counts with state-space search
author Kaizer, Wesley Luciano
author_facet Kaizer, Wesley Luciano
author_role author
dc.contributor.author.fl_str_mv Kaizer, Wesley Luciano
dc.contributor.advisor1.fl_str_mv Pereira, André Grahl
contributor_str_mv Pereira, André Grahl
dc.subject.por.fl_str_mv Inteligência artificial
Busca heurística
Algoritmos
Complexidade computacional
topic Inteligência artificial
Busca heurística
Algoritmos
Complexidade computacional
Classical planning
State-space heuristic search
Integer programming
Operator-counting framework
dc.subject.eng.fl_str_mv Classical planning
State-space heuristic search
Integer programming
Operator-counting framework
description A search algorithm with an admissible heuristic function is the most common approach to optimally solve classical planning tasks. Recently DAVIES et al. (2015) introduced the solver OpSeq using Logic-Based Benders Decomposition. In this approach to planning, the master problem is an integer program derived from the operator-counting framework that generates operator counts, i.e., an assignment of integer counts for each task operator. Then, the operator counts sequencing subproblem verifies if a plan satisfying these operator counts exists, or generates a violated constraint to strengthen the master problem. In OpSeq, the subproblem is solved by a SAT solver. In this thesis, we show that this subproblem can be better solved by state-space search. We introduce OpSearch, an A -based algorithm to solve the operator counts sequencing problem: it either finds an optimal plan, or uses the frontier of the search, i.e., the set of generated but yet unexpanded states, to derive a violated constraint. We show that using a standard search framework has three advantages: i) the search scales better than a SAT-based approach for solving the operator counts sequencing, ii) explicit information in the search frontier can be used to derive stronger constraints, and iii) stronger heuristics generate more informed constraints. We present results using the benchmark of the International Planning Competition, showing that this approach solves more planning tasks, using less memory. On tasks solved by both methods, OpSearch usually requires solving fewer operator counts sequencing problems than OpSeq, evidencing the stronger constraints generated by OpSearch.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-07-08T03:42:20Z
dc.date.issued.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/211457
dc.identifier.nrb.pt_BR.fl_str_mv 001115568
url http://hdl.handle.net/10183/211457
identifier_str_mv 001115568
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/211457/2/001115568.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/211457/1/001115568.pdf
bitstream.checksum.fl_str_mv 8c98ddf30a1e788c40bb27c97855f019
042d363a4b0c91cbecde60e9ea42c20e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831316095885115392