Energy consumption and performance of HPC architecture for Exascale

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Oliveira, Daniel Alfonso Gonçalves de
Orientador(a): Navaux, Philippe Olivier Alexandre
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
HPC
Link de acesso: http://hdl.handle.net/10183/105048
Resumo: Uma das principais preocupações para construir a próxima geração de sistemas PAD é o consumo de energia. Para quebrar a barreira de exascale a comunidade científica precisa investigar alternativas que possam lidar com o problema de consumo de energia. Sistemas PAD atuais não se preocupam com energia e já consomem GigaWatts. Requisitos de consumo de energia restringirão fortemente sistemas futuros. Nesse contexto processadores de alta potência abrem espaço para novas arquiteturas. Duas arquiteturas surgem no contexto de PAD. A primeira arquitetura são as unidades de processamento gráfico (GPU), GPUs possuem vários núcleos de processamento, suportando milhares de threads simultâneas, se adaptando bem a aplicações massivamente paralelas. Hoje alguns dos melhores sistemas PAD possuem GPUs que demonstram um alto desempenho por um baixo consumo de energia para várias aplicações paralelas. A segunda arquitetura são os processadores de baixo consumo, processadores ARM estão melhorando seu desempenho e mantendo o menor consumo de energia possível. Como exemplo desse ganho, projetos como Mont-Blanc apostam no uso de ARM para construir um sistema PAD energeticamente eficiente. Este trabalho visa verificar o potencial dessas arquiteturas emergentes. Avaliamos essas arquiteturas e comparamos com a arquitetura mais comum encontrada nos sistemas PAD atuais. O principal objetivo é analisar o consumo de energia e o desempenho dessas arquiteturas no contexto de sistemas PAD. Portanto, benchmarks heterogêneos foram executados em todas as arquiteturas. Os resultados mostram que a arquitetura de GPU foi a mais rápida e a melhor em termos de consumo de energia. GPU foi pelo menos 5 vezes mais rápida e consumiu 18 vezes menos energia considerando todos os benchmarks testados. Também observamos que processadores de alta potência foram mais rápidos e consumiram menos energia, para tarefas com uma carga de trabalho leve, do que comparado com processadores de baixo consumo. Entretanto, para tarefas com carga de trabalho leve processadores de baixo consumo apresentaram um consumo de energia melhor. Concluímos que sistemas heterogêneos combinando GPUs e processadores de baixo consumo podem ser uma solução interessante para alcançar um eficiência energética superior. Apesar de processadores de baixo consumo apresentarem um pior consumo de energia para cargas de trabalho pesadas. O consumo de energia extremamente baixo durante o processamento é inferior ao consumo ocioso das demais arquiteturas. Portanto, combinando processadores de baixo consumo para gerenciar GPUs pode resultar em uma eficiência energética superior a sistemas que combinam processadores de alta potência com GPUs.
id URGS_74d927478a785c339df313de27e81dec
oai_identifier_str oai:www.lume.ufrgs.br:10183/105048
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Oliveira, Daniel Alfonso Gonçalves deNavaux, Philippe Olivier Alexandre2014-10-28T02:13:49Z2013http://hdl.handle.net/10183/105048000943037Uma das principais preocupações para construir a próxima geração de sistemas PAD é o consumo de energia. Para quebrar a barreira de exascale a comunidade científica precisa investigar alternativas que possam lidar com o problema de consumo de energia. Sistemas PAD atuais não se preocupam com energia e já consomem GigaWatts. Requisitos de consumo de energia restringirão fortemente sistemas futuros. Nesse contexto processadores de alta potência abrem espaço para novas arquiteturas. Duas arquiteturas surgem no contexto de PAD. A primeira arquitetura são as unidades de processamento gráfico (GPU), GPUs possuem vários núcleos de processamento, suportando milhares de threads simultâneas, se adaptando bem a aplicações massivamente paralelas. Hoje alguns dos melhores sistemas PAD possuem GPUs que demonstram um alto desempenho por um baixo consumo de energia para várias aplicações paralelas. A segunda arquitetura são os processadores de baixo consumo, processadores ARM estão melhorando seu desempenho e mantendo o menor consumo de energia possível. Como exemplo desse ganho, projetos como Mont-Blanc apostam no uso de ARM para construir um sistema PAD energeticamente eficiente. Este trabalho visa verificar o potencial dessas arquiteturas emergentes. Avaliamos essas arquiteturas e comparamos com a arquitetura mais comum encontrada nos sistemas PAD atuais. O principal objetivo é analisar o consumo de energia e o desempenho dessas arquiteturas no contexto de sistemas PAD. Portanto, benchmarks heterogêneos foram executados em todas as arquiteturas. Os resultados mostram que a arquitetura de GPU foi a mais rápida e a melhor em termos de consumo de energia. GPU foi pelo menos 5 vezes mais rápida e consumiu 18 vezes menos energia considerando todos os benchmarks testados. Também observamos que processadores de alta potência foram mais rápidos e consumiram menos energia, para tarefas com uma carga de trabalho leve, do que comparado com processadores de baixo consumo. Entretanto, para tarefas com carga de trabalho leve processadores de baixo consumo apresentaram um consumo de energia melhor. Concluímos que sistemas heterogêneos combinando GPUs e processadores de baixo consumo podem ser uma solução interessante para alcançar um eficiência energética superior. Apesar de processadores de baixo consumo apresentarem um pior consumo de energia para cargas de trabalho pesadas. O consumo de energia extremamente baixo durante o processamento é inferior ao consumo ocioso das demais arquiteturas. Portanto, combinando processadores de baixo consumo para gerenciar GPUs pode resultar em uma eficiência energética superior a sistemas que combinam processadores de alta potência com GPUs.One of the main concerns to build the new generation of High Performance Computing (HPC) systems is energy consumption. To break the exascale barrier, the scientific community needs to investigate alternatives that cope with energy consumption. Current HPC systems are power hungry and are already consuming Megawatts of energy. Future exascale systems will be strongly constrained by their energy consumption requirements. Therefore, general purpose high power processors could be replaced by new architectures in HPC design. Two architectures emerge in the HPC context. The first architecture uses Graphic Processing Units (GPU). GPUs have many processing cores, supporting simultaneous execution of thousands of threads, adapting well to massively parallel applications. Today, top ranked HPC systems feature many GPUs, which present high processing speed at low energy consumption budget with various parallel applications. The second architecture uses Low Power Processors, such as ARM processors. They are improving the performance, while still aiming to keep the power consumption as low as possible. As an example of this performance gain, projects like Mont-Blanc bet on ARM to build energy efficient HPC systems. This work aims to verify the potential of these emerging architectures. We evaluate these architectures and compare them to the current most common HPC architecture, high power processors such as Intel. The main goal is to analyze the energy consumption and performance of these architectures in the HPC context. Therefore, heterogeneous HPC benchmarks were executed in the architectures. The results show that the GPU architecture is the fastest and the best in terms of energy efficiency. GPUs were at least 5 times faster while consuming 18 times less energy for all tested benchmarks. We also observed that high power processors are faster than low power processors and consume less energy for heavy-weight workloads. However, for light-weight workloads, low power processors presented a better energy efficiency. We conclude that heterogeneous systems combining GPUs and low power processors can be an interesting solution to achieve greater energy efficiency, although low power processors presented a worse energy efficiency for HPC workloads. Their extremely low power consumption during the processing of an application is less than the idle power of the other architectures. Therefore, combining low power processors with GPUs could result in an overall energy efficiency greater than high power processors combined with GPUs.application/pdfengComputacao cientifica : Alto desempenhoHPCExascaleARM processorsGPU acceleratorsEnergy consumptionPerformanceEnergy consumption and performance of HPC architecture for ExascaleConsumo de energia e desempenho de arquiteturas PAD para Exascale info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2013mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000943037.pdf000943037.pdfTexto completo (inglês)application/pdf2035625http://www.lume.ufrgs.br/bitstream/10183/105048/1/000943037.pdfc088ed257056afba07ba3504db13807eMD51TEXT000943037.pdf.txt000943037.pdf.txtExtracted Texttext/plain152104http://www.lume.ufrgs.br/bitstream/10183/105048/2/000943037.pdf.txtddff55b03ba8146708d764ca7dc78bf5MD52THUMBNAIL000943037.pdf.jpg000943037.pdf.jpgGenerated Thumbnailimage/jpeg1063http://www.lume.ufrgs.br/bitstream/10183/105048/3/000943037.pdf.jpgdf134e4cbeed786f7a81feaedd191b4fMD5310183/1050482021-05-26 04:28:59.029656oai:www.lume.ufrgs.br:10183/105048Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:28:59Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Energy consumption and performance of HPC architecture for Exascale
dc.title.alternative.pt.fl_str_mv Consumo de energia e desempenho de arquiteturas PAD para Exascale
title Energy consumption and performance of HPC architecture for Exascale
spellingShingle Energy consumption and performance of HPC architecture for Exascale
Oliveira, Daniel Alfonso Gonçalves de
Computacao cientifica : Alto desempenho
HPC
Exascale
ARM processors
GPU accelerators
Energy consumption
Performance
title_short Energy consumption and performance of HPC architecture for Exascale
title_full Energy consumption and performance of HPC architecture for Exascale
title_fullStr Energy consumption and performance of HPC architecture for Exascale
title_full_unstemmed Energy consumption and performance of HPC architecture for Exascale
title_sort Energy consumption and performance of HPC architecture for Exascale
author Oliveira, Daniel Alfonso Gonçalves de
author_facet Oliveira, Daniel Alfonso Gonçalves de
author_role author
dc.contributor.author.fl_str_mv Oliveira, Daniel Alfonso Gonçalves de
dc.contributor.advisor1.fl_str_mv Navaux, Philippe Olivier Alexandre
contributor_str_mv Navaux, Philippe Olivier Alexandre
dc.subject.por.fl_str_mv Computacao cientifica : Alto desempenho
topic Computacao cientifica : Alto desempenho
HPC
Exascale
ARM processors
GPU accelerators
Energy consumption
Performance
dc.subject.eng.fl_str_mv HPC
Exascale
ARM processors
GPU accelerators
Energy consumption
Performance
description Uma das principais preocupações para construir a próxima geração de sistemas PAD é o consumo de energia. Para quebrar a barreira de exascale a comunidade científica precisa investigar alternativas que possam lidar com o problema de consumo de energia. Sistemas PAD atuais não se preocupam com energia e já consomem GigaWatts. Requisitos de consumo de energia restringirão fortemente sistemas futuros. Nesse contexto processadores de alta potência abrem espaço para novas arquiteturas. Duas arquiteturas surgem no contexto de PAD. A primeira arquitetura são as unidades de processamento gráfico (GPU), GPUs possuem vários núcleos de processamento, suportando milhares de threads simultâneas, se adaptando bem a aplicações massivamente paralelas. Hoje alguns dos melhores sistemas PAD possuem GPUs que demonstram um alto desempenho por um baixo consumo de energia para várias aplicações paralelas. A segunda arquitetura são os processadores de baixo consumo, processadores ARM estão melhorando seu desempenho e mantendo o menor consumo de energia possível. Como exemplo desse ganho, projetos como Mont-Blanc apostam no uso de ARM para construir um sistema PAD energeticamente eficiente. Este trabalho visa verificar o potencial dessas arquiteturas emergentes. Avaliamos essas arquiteturas e comparamos com a arquitetura mais comum encontrada nos sistemas PAD atuais. O principal objetivo é analisar o consumo de energia e o desempenho dessas arquiteturas no contexto de sistemas PAD. Portanto, benchmarks heterogêneos foram executados em todas as arquiteturas. Os resultados mostram que a arquitetura de GPU foi a mais rápida e a melhor em termos de consumo de energia. GPU foi pelo menos 5 vezes mais rápida e consumiu 18 vezes menos energia considerando todos os benchmarks testados. Também observamos que processadores de alta potência foram mais rápidos e consumiram menos energia, para tarefas com uma carga de trabalho leve, do que comparado com processadores de baixo consumo. Entretanto, para tarefas com carga de trabalho leve processadores de baixo consumo apresentaram um consumo de energia melhor. Concluímos que sistemas heterogêneos combinando GPUs e processadores de baixo consumo podem ser uma solução interessante para alcançar um eficiência energética superior. Apesar de processadores de baixo consumo apresentarem um pior consumo de energia para cargas de trabalho pesadas. O consumo de energia extremamente baixo durante o processamento é inferior ao consumo ocioso das demais arquiteturas. Portanto, combinando processadores de baixo consumo para gerenciar GPUs pode resultar em uma eficiência energética superior a sistemas que combinam processadores de alta potência com GPUs.
publishDate 2013
dc.date.issued.fl_str_mv 2013
dc.date.accessioned.fl_str_mv 2014-10-28T02:13:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/105048
dc.identifier.nrb.pt_BR.fl_str_mv 000943037
url http://hdl.handle.net/10183/105048
identifier_str_mv 000943037
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/105048/1/000943037.pdf
http://www.lume.ufrgs.br/bitstream/10183/105048/2/000943037.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/105048/3/000943037.pdf.jpg
bitstream.checksum.fl_str_mv c088ed257056afba07ba3504db13807e
ddff55b03ba8146708d764ca7dc78bf5
df134e4cbeed786f7a81feaedd191b4f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831315955301482496