Combining prediction models and visualization techniques for enhanced performance analysis of irregular task-based applications

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Miletto, Marcelo Cogo
Orientador(a): Schnorr, Lucas Mello
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
HPC
Link de acesso: http://hdl.handle.net/10183/221594
Resumo: Parallel application performance analysis is an essential and a continuous step towards understanding and optimizing any high-performance program. Nowadays, ubiquitous and complex heterogeneous architectures turn this job even more burdensome. While paradigms like task-based ease programming through its abstractions and its runtime system, the analysis of such applications demand attention because of its specific view of the applications. Likewise, the analysis of irregular applications built upon specific data structures need to consider its abstractions and behavior to improve and facilitate an analyst’s work. Thus, the current work proposes strategies to enhance the performance analysis of irregular task-based applications and propose application-centric visualization panels to represent performance according to the elimination tree structure, the foundation of many direct sparse factorization methods. The strategies rely on tracing information for collecting task performance data. Since task-based applications can create many tasks and huge trace files, the proposed automatic mechanism for anomalous task classification based on regression models allows highlighting specific groups of problematic tasks and guiding the analysis process. The visualization techniques represent the tree structure and describe application-specific concepts like tree and node parallelism, child and parent dependencies, and communications. Those strategies are applied to the qr_mumps sparse task-based solver in an extensive set of experiments. The anomalous detection mechanism exposed four different task anomaly sources, guiding a solution that improved performance by up to 24% by reducing task interference. The elimination tree visualization panels allowed detailed comparisons between different application and runtime configurations, revealing other sources of inefficiency. The experiments also involved testing the qr_mumps application in a real computational simulation application, where it presented better performance than other parallel solvers. The results demonstrate the usefulness of the proposed strategies to guide the performance analysis of irregular task-based applications and enhance the performance representation of elimination-tree based applications.
id URGS_7d45ddd884ac1cf1e22b3c52cc2fd61a
oai_identifier_str oai:www.lume.ufrgs.br:10183/221594
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Miletto, Marcelo CogoSchnorr, Lucas MelloSchepke, Claudio2021-05-28T04:25:08Z2021http://hdl.handle.net/10183/221594001126169Parallel application performance analysis is an essential and a continuous step towards understanding and optimizing any high-performance program. Nowadays, ubiquitous and complex heterogeneous architectures turn this job even more burdensome. While paradigms like task-based ease programming through its abstractions and its runtime system, the analysis of such applications demand attention because of its specific view of the applications. Likewise, the analysis of irregular applications built upon specific data structures need to consider its abstractions and behavior to improve and facilitate an analyst’s work. Thus, the current work proposes strategies to enhance the performance analysis of irregular task-based applications and propose application-centric visualization panels to represent performance according to the elimination tree structure, the foundation of many direct sparse factorization methods. The strategies rely on tracing information for collecting task performance data. Since task-based applications can create many tasks and huge trace files, the proposed automatic mechanism for anomalous task classification based on regression models allows highlighting specific groups of problematic tasks and guiding the analysis process. The visualization techniques represent the tree structure and describe application-specific concepts like tree and node parallelism, child and parent dependencies, and communications. Those strategies are applied to the qr_mumps sparse task-based solver in an extensive set of experiments. The anomalous detection mechanism exposed four different task anomaly sources, guiding a solution that improved performance by up to 24% by reducing task interference. The elimination tree visualization panels allowed detailed comparisons between different application and runtime configurations, revealing other sources of inefficiency. The experiments also involved testing the qr_mumps application in a real computational simulation application, where it presented better performance than other parallel solvers. The results demonstrate the usefulness of the proposed strategies to guide the performance analysis of irregular task-based applications and enhance the performance representation of elimination-tree based applications.A análise de desempenho de aplicações paralelas trata-se de uma etapa essencial e contínua para entender e otimizar aplicações de alto desempenho. Arquiteturas heterogêneas hoje estão onipresentes e tornam esse trabalho ainda mais oneroso. Enquanto paradigmas como a programação baseada em tarefas facilitam o desenvolvimento por meio de abstrações e o sistema de runtime, sua análise exige mais atenção devido a sua visão específica da aplicação. Da mesma forma, análises de aplicações irregulares e construídas sobre estruturas de dados específicas precisam considerar tais características para facilitar o trabalho de analistas. Assim, este trabalho propõe estratégias para aprimorar a análise de desempenho de aplicações baseadas em tarefas irregulares usando painéis de visualização específicos, representando o desempenho de acordo com a estrutura da árvore de eliminação, alicerce de muitos métodos de fatoração esparsa direta. As estratégias utilizam informações de rastreamento para coletar dados de desempenho de tarefas. Como aplicações baseadas em tarefas podem gerar grandes arquivos de rastreamento, é proposto um mecanismo para classificação de tarefas anômalas com base em modelos de regressão que permite destacar tarefas problemáticas automaticamente, direcionando a análise. As técnicas de visualização representam a estrutura da árvore e comportamentos específicos da aplicação, como o paralelismo da árvore e dos nós, dependências entre nós filhos e pais, e comunicações. Essas estratégias são aplicadas ao solver esparso baseado em tarefas qr_mumps em um conjunto de experimentos. Os modelos de regressão expuseram quatro fontes de anomalias, guiando uma solução que melhorou o desempenho em até 24% ao reduzir a interferência entre tarefas. Os painéis de visualização da árvore de eliminação permitiram comparações detalhadas entre diferentes configurações da aplicação e runtime, revelando outras fontes de ineficiência. Também usamos o qr_mumps em uma aplicação de simulação computacional, onde ele apresentou melhor desempenho do que outros solvers paralelos. O estudo demonstrou a utilidade das técnicas propostas para guiar a análise de desempenho de aplicações baseadas em tarefas irregulares e melhorar a representação do desempenho de aplicações construídas sobre árvores de eliminação.application/pdfporProcessamento paraleloArquiteturas paralelasSimulação computacionalComputação de alto desempenhoHPCPerformance VisualizationPerformance ModelMultifrontal MethodTask-based ApplicationsCombining prediction models and visualization techniques for enhanced performance analysis of irregular task-based applicationsCombinando modelos de predição e técnicas de visualização para melhorar a análise de desempenho de aplicações baseadas em tarefas irregulares info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2021mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001126169.pdf.txt001126169.pdf.txtExtracted Texttext/plain282600http://www.lume.ufrgs.br/bitstream/10183/221594/2/001126169.pdf.txt70cafdb97434b6d4bbf3ece52e2b5985MD52ORIGINAL001126169.pdfTexto completo (inglês)application/pdf28895982http://www.lume.ufrgs.br/bitstream/10183/221594/1/001126169.pdf5ffd8469556e6f0c711dda1e4424845dMD5110183/2215942024-03-27 06:34:55.805126oai:www.lume.ufrgs.br:10183/221594Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-03-27T09:34:55Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Combining prediction models and visualization techniques for enhanced performance analysis of irregular task-based applications
dc.title.alternative.en.fl_str_mv Combinando modelos de predição e técnicas de visualização para melhorar a análise de desempenho de aplicações baseadas em tarefas irregulares
title Combining prediction models and visualization techniques for enhanced performance analysis of irregular task-based applications
spellingShingle Combining prediction models and visualization techniques for enhanced performance analysis of irregular task-based applications
Miletto, Marcelo Cogo
Processamento paralelo
Arquiteturas paralelas
Simulação computacional
Computação de alto desempenho
HPC
Performance Visualization
Performance Model
Multifrontal Method
Task-based Applications
title_short Combining prediction models and visualization techniques for enhanced performance analysis of irregular task-based applications
title_full Combining prediction models and visualization techniques for enhanced performance analysis of irregular task-based applications
title_fullStr Combining prediction models and visualization techniques for enhanced performance analysis of irregular task-based applications
title_full_unstemmed Combining prediction models and visualization techniques for enhanced performance analysis of irregular task-based applications
title_sort Combining prediction models and visualization techniques for enhanced performance analysis of irregular task-based applications
author Miletto, Marcelo Cogo
author_facet Miletto, Marcelo Cogo
author_role author
dc.contributor.author.fl_str_mv Miletto, Marcelo Cogo
dc.contributor.advisor1.fl_str_mv Schnorr, Lucas Mello
dc.contributor.advisor-co1.fl_str_mv Schepke, Claudio
contributor_str_mv Schnorr, Lucas Mello
Schepke, Claudio
dc.subject.por.fl_str_mv Processamento paralelo
Arquiteturas paralelas
Simulação computacional
Computação de alto desempenho
topic Processamento paralelo
Arquiteturas paralelas
Simulação computacional
Computação de alto desempenho
HPC
Performance Visualization
Performance Model
Multifrontal Method
Task-based Applications
dc.subject.eng.fl_str_mv HPC
Performance Visualization
Performance Model
Multifrontal Method
Task-based Applications
description Parallel application performance analysis is an essential and a continuous step towards understanding and optimizing any high-performance program. Nowadays, ubiquitous and complex heterogeneous architectures turn this job even more burdensome. While paradigms like task-based ease programming through its abstractions and its runtime system, the analysis of such applications demand attention because of its specific view of the applications. Likewise, the analysis of irregular applications built upon specific data structures need to consider its abstractions and behavior to improve and facilitate an analyst’s work. Thus, the current work proposes strategies to enhance the performance analysis of irregular task-based applications and propose application-centric visualization panels to represent performance according to the elimination tree structure, the foundation of many direct sparse factorization methods. The strategies rely on tracing information for collecting task performance data. Since task-based applications can create many tasks and huge trace files, the proposed automatic mechanism for anomalous task classification based on regression models allows highlighting specific groups of problematic tasks and guiding the analysis process. The visualization techniques represent the tree structure and describe application-specific concepts like tree and node parallelism, child and parent dependencies, and communications. Those strategies are applied to the qr_mumps sparse task-based solver in an extensive set of experiments. The anomalous detection mechanism exposed four different task anomaly sources, guiding a solution that improved performance by up to 24% by reducing task interference. The elimination tree visualization panels allowed detailed comparisons between different application and runtime configurations, revealing other sources of inefficiency. The experiments also involved testing the qr_mumps application in a real computational simulation application, where it presented better performance than other parallel solvers. The results demonstrate the usefulness of the proposed strategies to guide the performance analysis of irregular task-based applications and enhance the performance representation of elimination-tree based applications.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-05-28T04:25:08Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/221594
dc.identifier.nrb.pt_BR.fl_str_mv 001126169
url http://hdl.handle.net/10183/221594
identifier_str_mv 001126169
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/221594/2/001126169.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/221594/1/001126169.pdf
bitstream.checksum.fl_str_mv 70cafdb97434b6d4bbf3ece52e2b5985
5ffd8469556e6f0c711dda1e4424845d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831316113007312896