Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | http://hdl.handle.net/10183/150205 |
Resumo: | O Atracamento Molecular é uma importante ferramenta utilizada no descobrimento de novos fármacos. O atracamento com ligante flexível é um processo computacionalmente custoso devido ao número alto de graus de liberdade do ligante e da rugosidade do espaço de busca conformacional representando a afinidade entre o receptor e uma molécula ligante. O problema é definido como a busca pela solução de menor energia de ligação proteína-ligante. Considerando uma função suficientemente acurada, a solução ótima coincide com a melhor orientação e afinidade entre as moléculas. Assim, o método de busca e a função de energia são partes fundamentais para a resolução do problema. Muitos desafios são enfrentados para a resolução do problema, o tratamento da flexibilidade, algoritmo de amostragem, a exploração do espaço de busca, o cálculo da energia livre entre os átomos, são alguns dos focos estudados. Esta dissertação apresenta uma técnica baseada em um Algoritmo Genético de Chaves Aleatórias Viciadas, incluindo a discretização do espaço de busca e métodos de agrupamento para a multimodalidade do problema de atracamento molecular. A metodologia desenvolvida explora o espaço de busca gerando soluções diversificadas. O método proposto foi testado em uma seleção de complexos proteína-ligante e foi comparado com softwares existentes: AutodockVina e Dockthor. Os resultados foram estatisticamente analisados em termos estruturais. O método se mostrou eficiente quando comparado com outras ferramentas e uma alternativa para o problema de Atracamento Molecular. |
| id |
URGS_81ee0377d769525b6bee61357a21611e |
|---|---|
| oai_identifier_str |
oai:www.lume.ufrgs.br:10183/150205 |
| network_acronym_str |
URGS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| repository_id_str |
|
| spelling |
Oliveira, Eduardo Spieler deDorn, Márcio2016-12-17T02:17:20Z2016http://hdl.handle.net/10183/150205001008173O Atracamento Molecular é uma importante ferramenta utilizada no descobrimento de novos fármacos. O atracamento com ligante flexível é um processo computacionalmente custoso devido ao número alto de graus de liberdade do ligante e da rugosidade do espaço de busca conformacional representando a afinidade entre o receptor e uma molécula ligante. O problema é definido como a busca pela solução de menor energia de ligação proteína-ligante. Considerando uma função suficientemente acurada, a solução ótima coincide com a melhor orientação e afinidade entre as moléculas. Assim, o método de busca e a função de energia são partes fundamentais para a resolução do problema. Muitos desafios são enfrentados para a resolução do problema, o tratamento da flexibilidade, algoritmo de amostragem, a exploração do espaço de busca, o cálculo da energia livre entre os átomos, são alguns dos focos estudados. Esta dissertação apresenta uma técnica baseada em um Algoritmo Genético de Chaves Aleatórias Viciadas, incluindo a discretização do espaço de busca e métodos de agrupamento para a multimodalidade do problema de atracamento molecular. A metodologia desenvolvida explora o espaço de busca gerando soluções diversificadas. O método proposto foi testado em uma seleção de complexos proteína-ligante e foi comparado com softwares existentes: AutodockVina e Dockthor. Os resultados foram estatisticamente analisados em termos estruturais. O método se mostrou eficiente quando comparado com outras ferramentas e uma alternativa para o problema de Atracamento Molecular.Molecular Docking is a valuable tool for drug discovery. Receptor and flexible Ligand docking is a very computationally expensive process due to a large number of degrees of freedom of the ligand and the roughness of the molecular binding search space. A Molecular Docking simulation starts with a receptor and ligand unbounded structures and the algorithm tests hundreds of thousands of ligands conformations and orientations to find the best receptor-ligand binding affinity by assigning and optimizing an energy function. Despite the advances in the conception of methods and computational strategies for search the best protein-ligand binding affinity, the development of new strategies, the adaptation, and investigation of new approaches and the combination of existing and state-of-the-art computational methods and techniques to the Molecular Docking problem are clearly needed. We developed a Biased Random-Key Genetic Algorithm as a sampling strategy to search the protein-ligand conformational space. The proposed method has been tested on a selection of protein-ligand complexes and compared with existing tools AutodockVina and Dockthor. Compared with other traditional docking software, the proposed method has the best average Root-Mean-Square Deviation. Structural results were statistically analyzed. The proposed method proved to be efficient and a good alternative to the molecular docking problem.application/pdfporBioinformáticaInformática médicaAlgoritmo genéticoOtimizaçãoMolecular dockingUm algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecularA biased random key genetic algorithm for the molecular docking problem info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2016mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001008173.pdf001008173.pdfTexto completoapplication/pdf10200440http://www.lume.ufrgs.br/bitstream/10183/150205/1/001008173.pdf21adc2bba132ccd2b7985e848a08f46cMD51TEXT001008173.pdf.txt001008173.pdf.txtExtracted Texttext/plain200452http://www.lume.ufrgs.br/bitstream/10183/150205/2/001008173.pdf.txt479a05869f4817cd872cf251cb3b5f73MD52THUMBNAIL001008173.pdf.jpg001008173.pdf.jpgGenerated Thumbnailimage/jpeg1039http://www.lume.ufrgs.br/bitstream/10183/150205/3/001008173.pdf.jpg7bcbbc01f513acb25522925233831d1fMD5310183/1502052024-11-02 06:50:54.916535oai:www.lume.ufrgs.br:10183/150205Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-11-02T09:50:54Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
| dc.title.pt_BR.fl_str_mv |
Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular |
| dc.title.alternative.en.fl_str_mv |
A biased random key genetic algorithm for the molecular docking problem |
| title |
Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular |
| spellingShingle |
Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular Oliveira, Eduardo Spieler de Bioinformática Informática médica Algoritmo genético Otimização Molecular docking |
| title_short |
Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular |
| title_full |
Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular |
| title_fullStr |
Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular |
| title_full_unstemmed |
Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular |
| title_sort |
Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular |
| author |
Oliveira, Eduardo Spieler de |
| author_facet |
Oliveira, Eduardo Spieler de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Oliveira, Eduardo Spieler de |
| dc.contributor.advisor1.fl_str_mv |
Dorn, Márcio |
| contributor_str_mv |
Dorn, Márcio |
| dc.subject.por.fl_str_mv |
Bioinformática Informática médica Algoritmo genético Otimização |
| topic |
Bioinformática Informática médica Algoritmo genético Otimização Molecular docking |
| dc.subject.eng.fl_str_mv |
Molecular docking |
| description |
O Atracamento Molecular é uma importante ferramenta utilizada no descobrimento de novos fármacos. O atracamento com ligante flexível é um processo computacionalmente custoso devido ao número alto de graus de liberdade do ligante e da rugosidade do espaço de busca conformacional representando a afinidade entre o receptor e uma molécula ligante. O problema é definido como a busca pela solução de menor energia de ligação proteína-ligante. Considerando uma função suficientemente acurada, a solução ótima coincide com a melhor orientação e afinidade entre as moléculas. Assim, o método de busca e a função de energia são partes fundamentais para a resolução do problema. Muitos desafios são enfrentados para a resolução do problema, o tratamento da flexibilidade, algoritmo de amostragem, a exploração do espaço de busca, o cálculo da energia livre entre os átomos, são alguns dos focos estudados. Esta dissertação apresenta uma técnica baseada em um Algoritmo Genético de Chaves Aleatórias Viciadas, incluindo a discretização do espaço de busca e métodos de agrupamento para a multimodalidade do problema de atracamento molecular. A metodologia desenvolvida explora o espaço de busca gerando soluções diversificadas. O método proposto foi testado em uma seleção de complexos proteína-ligante e foi comparado com softwares existentes: AutodockVina e Dockthor. Os resultados foram estatisticamente analisados em termos estruturais. O método se mostrou eficiente quando comparado com outras ferramentas e uma alternativa para o problema de Atracamento Molecular. |
| publishDate |
2016 |
| dc.date.accessioned.fl_str_mv |
2016-12-17T02:17:20Z |
| dc.date.issued.fl_str_mv |
2016 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/150205 |
| dc.identifier.nrb.pt_BR.fl_str_mv |
001008173 |
| url |
http://hdl.handle.net/10183/150205 |
| identifier_str_mv |
001008173 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
| instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
| instacron_str |
UFRGS |
| institution |
UFRGS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/150205/1/001008173.pdf http://www.lume.ufrgs.br/bitstream/10183/150205/2/001008173.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/150205/3/001008173.pdf.jpg |
| bitstream.checksum.fl_str_mv |
21adc2bba132ccd2b7985e848a08f46c 479a05869f4817cd872cf251cb3b5f73 7bcbbc01f513acb25522925233831d1f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
| repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
| _version_ |
1831316006640812032 |