A comparison of range value at risk forecasting models

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Gössling, Thalles Weber
Orientador(a): Müller, Fernanda Maria
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/232940
Resumo: Risk forecasting is an important and helpful process for investors, fund managers, traders, and market makers. Choosing an inappropriate risk forecasting model can trigger irreversible losses. In this context, this study aims to evaluate the quality of different models to forecast the Range Value at Risk (RVaR), in both univariate and multivariate analysis, and compare the forecasts to other important risk measures like Value at Risk (VaR) and Expected Shortfall (ES). To assess the performance of both the univariate and multivariate models to RVaR forecasting, we consider an empirical exercise with different asset classes, rolling window estimations, and significance levels. We also evaluate prediction accuracy using Monte Carlo simulations in the univariate analysis, considering different scenarios. We evaluate the empirical forecasts with the score functions of each risk measure. We identified that different models could forecast better different assets, and the GARCH model with Johnson’s SU distribution overcoming the other distributions. We observed the RVine and CVine copulas as better models in the multivariate study. Besides that, we noted that the models with Student’s t marginal distribution have better performance according to realized loss (score function). We identified that even if a model can forecast RVaR well, that does not imply that the same model will forecast other risk measures well.
id URGS_8eb2fdb29575466ac506cef62e17c8b2
oai_identifier_str oai:www.lume.ufrgs.br:10183/232940
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Gössling, Thalles WeberMüller, Fernanda Maria2021-12-14T04:28:02Z2021http://hdl.handle.net/10183/232940001134757Risk forecasting is an important and helpful process for investors, fund managers, traders, and market makers. Choosing an inappropriate risk forecasting model can trigger irreversible losses. In this context, this study aims to evaluate the quality of different models to forecast the Range Value at Risk (RVaR), in both univariate and multivariate analysis, and compare the forecasts to other important risk measures like Value at Risk (VaR) and Expected Shortfall (ES). To assess the performance of both the univariate and multivariate models to RVaR forecasting, we consider an empirical exercise with different asset classes, rolling window estimations, and significance levels. We also evaluate prediction accuracy using Monte Carlo simulations in the univariate analysis, considering different scenarios. We evaluate the empirical forecasts with the score functions of each risk measure. We identified that different models could forecast better different assets, and the GARCH model with Johnson’s SU distribution overcoming the other distributions. We observed the RVine and CVine copulas as better models in the multivariate study. Besides that, we noted that the models with Student’s t marginal distribution have better performance according to realized loss (score function). We identified that even if a model can forecast RVaR well, that does not imply that the same model will forecast other risk measures well.application/pdfengAnálise de riscoRisco financeiroInvestimento financeiroAdministração financeiraRisk forecastingRisk measuresRange Value at Risk (RVaR)ElicitabilityMonte Carlo simulationsA comparison of range value at risk forecasting modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulEscola de AdministraçãoPrograma de Pós-Graduação em AdministraçãoPorto Alegre, BR-RS2021mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001134757.pdf.txt001134757.pdf.txtExtracted Texttext/plain232664http://www.lume.ufrgs.br/bitstream/10183/232940/2/001134757.pdf.txt14ee7ee2e99357abf9c1e2dcd0978e63MD52ORIGINAL001134757.pdfTexto completo (inglês)application/pdf604538http://www.lume.ufrgs.br/bitstream/10183/232940/1/001134757.pdff545d89b4afe1c0d84c5b886166c7a29MD5110183/2329402021-12-20 05:32:11.228596oai:www.lume.ufrgs.br:10183/232940Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-12-20T07:32:11Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv A comparison of range value at risk forecasting models
title A comparison of range value at risk forecasting models
spellingShingle A comparison of range value at risk forecasting models
Gössling, Thalles Weber
Análise de risco
Risco financeiro
Investimento financeiro
Administração financeira
Risk forecasting
Risk measures
Range Value at Risk (RVaR)
Elicitability
Monte Carlo simulations
title_short A comparison of range value at risk forecasting models
title_full A comparison of range value at risk forecasting models
title_fullStr A comparison of range value at risk forecasting models
title_full_unstemmed A comparison of range value at risk forecasting models
title_sort A comparison of range value at risk forecasting models
author Gössling, Thalles Weber
author_facet Gössling, Thalles Weber
author_role author
dc.contributor.author.fl_str_mv Gössling, Thalles Weber
dc.contributor.advisor1.fl_str_mv Müller, Fernanda Maria
contributor_str_mv Müller, Fernanda Maria
dc.subject.por.fl_str_mv Análise de risco
Risco financeiro
Investimento financeiro
Administração financeira
topic Análise de risco
Risco financeiro
Investimento financeiro
Administração financeira
Risk forecasting
Risk measures
Range Value at Risk (RVaR)
Elicitability
Monte Carlo simulations
dc.subject.eng.fl_str_mv Risk forecasting
Risk measures
Range Value at Risk (RVaR)
Elicitability
Monte Carlo simulations
description Risk forecasting is an important and helpful process for investors, fund managers, traders, and market makers. Choosing an inappropriate risk forecasting model can trigger irreversible losses. In this context, this study aims to evaluate the quality of different models to forecast the Range Value at Risk (RVaR), in both univariate and multivariate analysis, and compare the forecasts to other important risk measures like Value at Risk (VaR) and Expected Shortfall (ES). To assess the performance of both the univariate and multivariate models to RVaR forecasting, we consider an empirical exercise with different asset classes, rolling window estimations, and significance levels. We also evaluate prediction accuracy using Monte Carlo simulations in the univariate analysis, considering different scenarios. We evaluate the empirical forecasts with the score functions of each risk measure. We identified that different models could forecast better different assets, and the GARCH model with Johnson’s SU distribution overcoming the other distributions. We observed the RVine and CVine copulas as better models in the multivariate study. Besides that, we noted that the models with Student’s t marginal distribution have better performance according to realized loss (score function). We identified that even if a model can forecast RVaR well, that does not imply that the same model will forecast other risk measures well.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-12-14T04:28:02Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/232940
dc.identifier.nrb.pt_BR.fl_str_mv 001134757
url http://hdl.handle.net/10183/232940
identifier_str_mv 001134757
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/232940/2/001134757.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/232940/1/001134757.pdf
bitstream.checksum.fl_str_mv 14ee7ee2e99357abf9c1e2dcd0978e63
f545d89b4afe1c0d84c5b886166c7a29
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831316123522433024