A comparison of range value at risk forecasting models
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | http://hdl.handle.net/10183/232940 |
Resumo: | Risk forecasting is an important and helpful process for investors, fund managers, traders, and market makers. Choosing an inappropriate risk forecasting model can trigger irreversible losses. In this context, this study aims to evaluate the quality of different models to forecast the Range Value at Risk (RVaR), in both univariate and multivariate analysis, and compare the forecasts to other important risk measures like Value at Risk (VaR) and Expected Shortfall (ES). To assess the performance of both the univariate and multivariate models to RVaR forecasting, we consider an empirical exercise with different asset classes, rolling window estimations, and significance levels. We also evaluate prediction accuracy using Monte Carlo simulations in the univariate analysis, considering different scenarios. We evaluate the empirical forecasts with the score functions of each risk measure. We identified that different models could forecast better different assets, and the GARCH model with Johnson’s SU distribution overcoming the other distributions. We observed the RVine and CVine copulas as better models in the multivariate study. Besides that, we noted that the models with Student’s t marginal distribution have better performance according to realized loss (score function). We identified that even if a model can forecast RVaR well, that does not imply that the same model will forecast other risk measures well. |
| id |
URGS_8eb2fdb29575466ac506cef62e17c8b2 |
|---|---|
| oai_identifier_str |
oai:www.lume.ufrgs.br:10183/232940 |
| network_acronym_str |
URGS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| repository_id_str |
|
| spelling |
Gössling, Thalles WeberMüller, Fernanda Maria2021-12-14T04:28:02Z2021http://hdl.handle.net/10183/232940001134757Risk forecasting is an important and helpful process for investors, fund managers, traders, and market makers. Choosing an inappropriate risk forecasting model can trigger irreversible losses. In this context, this study aims to evaluate the quality of different models to forecast the Range Value at Risk (RVaR), in both univariate and multivariate analysis, and compare the forecasts to other important risk measures like Value at Risk (VaR) and Expected Shortfall (ES). To assess the performance of both the univariate and multivariate models to RVaR forecasting, we consider an empirical exercise with different asset classes, rolling window estimations, and significance levels. We also evaluate prediction accuracy using Monte Carlo simulations in the univariate analysis, considering different scenarios. We evaluate the empirical forecasts with the score functions of each risk measure. We identified that different models could forecast better different assets, and the GARCH model with Johnson’s SU distribution overcoming the other distributions. We observed the RVine and CVine copulas as better models in the multivariate study. Besides that, we noted that the models with Student’s t marginal distribution have better performance according to realized loss (score function). We identified that even if a model can forecast RVaR well, that does not imply that the same model will forecast other risk measures well.application/pdfengAnálise de riscoRisco financeiroInvestimento financeiroAdministração financeiraRisk forecastingRisk measuresRange Value at Risk (RVaR)ElicitabilityMonte Carlo simulationsA comparison of range value at risk forecasting modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulEscola de AdministraçãoPrograma de Pós-Graduação em AdministraçãoPorto Alegre, BR-RS2021mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001134757.pdf.txt001134757.pdf.txtExtracted Texttext/plain232664http://www.lume.ufrgs.br/bitstream/10183/232940/2/001134757.pdf.txt14ee7ee2e99357abf9c1e2dcd0978e63MD52ORIGINAL001134757.pdfTexto completo (inglês)application/pdf604538http://www.lume.ufrgs.br/bitstream/10183/232940/1/001134757.pdff545d89b4afe1c0d84c5b886166c7a29MD5110183/2329402021-12-20 05:32:11.228596oai:www.lume.ufrgs.br:10183/232940Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-12-20T07:32:11Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
| dc.title.pt_BR.fl_str_mv |
A comparison of range value at risk forecasting models |
| title |
A comparison of range value at risk forecasting models |
| spellingShingle |
A comparison of range value at risk forecasting models Gössling, Thalles Weber Análise de risco Risco financeiro Investimento financeiro Administração financeira Risk forecasting Risk measures Range Value at Risk (RVaR) Elicitability Monte Carlo simulations |
| title_short |
A comparison of range value at risk forecasting models |
| title_full |
A comparison of range value at risk forecasting models |
| title_fullStr |
A comparison of range value at risk forecasting models |
| title_full_unstemmed |
A comparison of range value at risk forecasting models |
| title_sort |
A comparison of range value at risk forecasting models |
| author |
Gössling, Thalles Weber |
| author_facet |
Gössling, Thalles Weber |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Gössling, Thalles Weber |
| dc.contributor.advisor1.fl_str_mv |
Müller, Fernanda Maria |
| contributor_str_mv |
Müller, Fernanda Maria |
| dc.subject.por.fl_str_mv |
Análise de risco Risco financeiro Investimento financeiro Administração financeira |
| topic |
Análise de risco Risco financeiro Investimento financeiro Administração financeira Risk forecasting Risk measures Range Value at Risk (RVaR) Elicitability Monte Carlo simulations |
| dc.subject.eng.fl_str_mv |
Risk forecasting Risk measures Range Value at Risk (RVaR) Elicitability Monte Carlo simulations |
| description |
Risk forecasting is an important and helpful process for investors, fund managers, traders, and market makers. Choosing an inappropriate risk forecasting model can trigger irreversible losses. In this context, this study aims to evaluate the quality of different models to forecast the Range Value at Risk (RVaR), in both univariate and multivariate analysis, and compare the forecasts to other important risk measures like Value at Risk (VaR) and Expected Shortfall (ES). To assess the performance of both the univariate and multivariate models to RVaR forecasting, we consider an empirical exercise with different asset classes, rolling window estimations, and significance levels. We also evaluate prediction accuracy using Monte Carlo simulations in the univariate analysis, considering different scenarios. We evaluate the empirical forecasts with the score functions of each risk measure. We identified that different models could forecast better different assets, and the GARCH model with Johnson’s SU distribution overcoming the other distributions. We observed the RVine and CVine copulas as better models in the multivariate study. Besides that, we noted that the models with Student’s t marginal distribution have better performance according to realized loss (score function). We identified that even if a model can forecast RVaR well, that does not imply that the same model will forecast other risk measures well. |
| publishDate |
2021 |
| dc.date.accessioned.fl_str_mv |
2021-12-14T04:28:02Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/232940 |
| dc.identifier.nrb.pt_BR.fl_str_mv |
001134757 |
| url |
http://hdl.handle.net/10183/232940 |
| identifier_str_mv |
001134757 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
| instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
| instacron_str |
UFRGS |
| institution |
UFRGS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/232940/2/001134757.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/232940/1/001134757.pdf |
| bitstream.checksum.fl_str_mv |
14ee7ee2e99357abf9c1e2dcd0978e63 f545d89b4afe1c0d84c5b886166c7a29 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
| repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
| _version_ |
1831316123522433024 |