S-Chart : um arcabouço para interpretação visual de gráficos
| Ano de defesa: | 2009 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | http://hdl.handle.net/10183/17039 |
Resumo: | Interpretação semântica de imagens tem se mostrado uma das fronteiras mais promissoras da área de Visão Computacional, especificamente aplicada a interpretação imagens. Nas abordagens que estão sendo propostas atualmente, conhecimento visual explicitamente modelado é utilizado com algoritmos de raciocínio simbólico combinados a algoritmos de processamento de imagem a fim de se extrair o conteúdo de imagens e associá-lo a modelos semanticamente ricos. Este trabalho apresenta uma abordagem de interpretação semântica de imagens especificamente voltada para interpretação de gráficos de linhas, chamada S-Chart. Ela consiste um conjunto de modelos de conhecimento e algoritmos que podem ser instanciados para interpretação de gráficos em diversos domínios. Os modelos são representados em três níveis semânticos e aplicam o conceito de ancoramento simbólico (symbol grounding) para mapear as primitivas entre os níveis. Os algoritmos de interpretação propostos fazem a interação entre o raciocínio simbólico de alto nível e os algoritmos de processamento de sinal para os dados brutos dos gráficos analisados. Para demonstrar a aplicabilidade do framework S-Chart, foi desenvolvido o sistema InteliStrata, uma aplicação no domínio da Geologia, voltada para interpretação semântica de gráficos de perfis de poço. Utilizando a aplicação, foram interpretados dois perfis de raios gama capturados em poços de exploração, de modo que o sistema identificasse a presença de Sequências Estratigráficas e superfícies de inundação máximas. Os resultados foram comparados com a interpretação de um geólogo especialista sobre os mesmos dados. O sistema aponta as mesmas sequências já identificadas e oferece outras opções de interpretação compatíveis com as do geólogo utilizando os mesmos dados. O framework S-Chart tem seus pontos fortes nos seus modelos representação de conhecimento visual independentes de domínio, que permitem a utilização do mesmo arcabouço em diferentes aplicações e, em especial, no seu modelo de ancoramento simbólico entre primitivas de representação. |
| id |
URGS_b3da57e17f93c6edc712f54bf1da5e5e |
|---|---|
| oai_identifier_str |
oai:www.lume.ufrgs.br:10183/17039 |
| network_acronym_str |
URGS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| repository_id_str |
|
| spelling |
Fiorini, Sandro RamaAbel, MaraScherer, Claiton Marlon dos Santos2009-08-22T04:18:02Z2009http://hdl.handle.net/10183/17039000710038Interpretação semântica de imagens tem se mostrado uma das fronteiras mais promissoras da área de Visão Computacional, especificamente aplicada a interpretação imagens. Nas abordagens que estão sendo propostas atualmente, conhecimento visual explicitamente modelado é utilizado com algoritmos de raciocínio simbólico combinados a algoritmos de processamento de imagem a fim de se extrair o conteúdo de imagens e associá-lo a modelos semanticamente ricos. Este trabalho apresenta uma abordagem de interpretação semântica de imagens especificamente voltada para interpretação de gráficos de linhas, chamada S-Chart. Ela consiste um conjunto de modelos de conhecimento e algoritmos que podem ser instanciados para interpretação de gráficos em diversos domínios. Os modelos são representados em três níveis semânticos e aplicam o conceito de ancoramento simbólico (symbol grounding) para mapear as primitivas entre os níveis. Os algoritmos de interpretação propostos fazem a interação entre o raciocínio simbólico de alto nível e os algoritmos de processamento de sinal para os dados brutos dos gráficos analisados. Para demonstrar a aplicabilidade do framework S-Chart, foi desenvolvido o sistema InteliStrata, uma aplicação no domínio da Geologia, voltada para interpretação semântica de gráficos de perfis de poço. Utilizando a aplicação, foram interpretados dois perfis de raios gama capturados em poços de exploração, de modo que o sistema identificasse a presença de Sequências Estratigráficas e superfícies de inundação máximas. Os resultados foram comparados com a interpretação de um geólogo especialista sobre os mesmos dados. O sistema aponta as mesmas sequências já identificadas e oferece outras opções de interpretação compatíveis com as do geólogo utilizando os mesmos dados. O framework S-Chart tem seus pontos fortes nos seus modelos representação de conhecimento visual independentes de domínio, que permitem a utilização do mesmo arcabouço em diferentes aplicações e, em especial, no seu modelo de ancoramento simbólico entre primitivas de representação.Semantic image interpretation is one of the most promising frontiers in the Computer Vision area, specifically when applied to Image Interpretation. To reach semantic interpretation, visual knowledge explicitly represented is applied by symbolic reasoning algorithms combined with image processing algorithms in order to extract the content of the images and associate it with semantically rich models. This work describes the S-Chart approach, a semantic image interpretation approach designed for interpretation of line charts. It is structured as a set of knowledge models and algorithms that can be instantiated to accomplish chart interpretation in other domains. The models are represented in three semantic levels and apply the concept of symbol grounding in order to map the primitives between the levels. The interpretation algorithms carry out the interaction between the symbolic reasoning in the high level, and the signal processing algorithms in the low level data. In order to demonstrate the applicability of the S-Chart framework, we developed the InteliStrata system, an application in Geology for the semantic interpretation of well log profiles. Using the application, we have interpreted the graphs of two gamma-ray profiles captured in exploration wells, to indicate the position of Stratigraphic Sequences and the maximum flooding surfaces. The results were compared with the interpretation of an experienced geologist using the same data input. The system was able to point the same identified sequences and offered alternative interpretation that were compatible with the geologist interpretation over the data. The S-Chart framework demonstrates its effectiveness on interpretation of pictorial information in knowledge intensive domains. The stronger points of the approach are its domain independent models for visual knowledge representation and, specially, the application of a symbol grounding model to provide a correlation between representation primitives.application/pdfporInteligência artificialRepresentacao : ConhecimentoSemantic chart interpretationVisual knowledgeKnowledge modelsSymbol groundingComputer visionS-Chart : um arcabouço para interpretação visual de gráficosS-Chart: a framework for visual interpretation of line charts info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2009mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000710038.pdf000710038.pdfTexto completoapplication/pdf6779540http://www.lume.ufrgs.br/bitstream/10183/17039/1/000710038.pdf107ae93433e37abbf7997dbfb60a902aMD51TEXT000710038.pdf.txt000710038.pdf.txtExtracted Texttext/plain258808http://www.lume.ufrgs.br/bitstream/10183/17039/2/000710038.pdf.txtfe4c386fa0df6dae6342f8c72806c628MD52THUMBNAIL000710038.pdf.jpg000710038.pdf.jpgGenerated Thumbnailimage/jpeg1160http://www.lume.ufrgs.br/bitstream/10183/17039/3/000710038.pdf.jpgbe1411962e441194a411238ec1fc8ae5MD5310183/170392018-10-18 07:18:55.214oai:www.lume.ufrgs.br:10183/17039Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-18T10:18:55Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
| dc.title.pt_BR.fl_str_mv |
S-Chart : um arcabouço para interpretação visual de gráficos |
| dc.title.alternative.en.fl_str_mv |
S-Chart: a framework for visual interpretation of line charts |
| title |
S-Chart : um arcabouço para interpretação visual de gráficos |
| spellingShingle |
S-Chart : um arcabouço para interpretação visual de gráficos Fiorini, Sandro Rama Inteligência artificial Representacao : Conhecimento Semantic chart interpretation Visual knowledge Knowledge models Symbol grounding Computer vision |
| title_short |
S-Chart : um arcabouço para interpretação visual de gráficos |
| title_full |
S-Chart : um arcabouço para interpretação visual de gráficos |
| title_fullStr |
S-Chart : um arcabouço para interpretação visual de gráficos |
| title_full_unstemmed |
S-Chart : um arcabouço para interpretação visual de gráficos |
| title_sort |
S-Chart : um arcabouço para interpretação visual de gráficos |
| author |
Fiorini, Sandro Rama |
| author_facet |
Fiorini, Sandro Rama |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Fiorini, Sandro Rama |
| dc.contributor.advisor1.fl_str_mv |
Abel, Mara |
| dc.contributor.advisor-co1.fl_str_mv |
Scherer, Claiton Marlon dos Santos |
| contributor_str_mv |
Abel, Mara Scherer, Claiton Marlon dos Santos |
| dc.subject.por.fl_str_mv |
Inteligência artificial Representacao : Conhecimento |
| topic |
Inteligência artificial Representacao : Conhecimento Semantic chart interpretation Visual knowledge Knowledge models Symbol grounding Computer vision |
| dc.subject.eng.fl_str_mv |
Semantic chart interpretation Visual knowledge Knowledge models Symbol grounding Computer vision |
| description |
Interpretação semântica de imagens tem se mostrado uma das fronteiras mais promissoras da área de Visão Computacional, especificamente aplicada a interpretação imagens. Nas abordagens que estão sendo propostas atualmente, conhecimento visual explicitamente modelado é utilizado com algoritmos de raciocínio simbólico combinados a algoritmos de processamento de imagem a fim de se extrair o conteúdo de imagens e associá-lo a modelos semanticamente ricos. Este trabalho apresenta uma abordagem de interpretação semântica de imagens especificamente voltada para interpretação de gráficos de linhas, chamada S-Chart. Ela consiste um conjunto de modelos de conhecimento e algoritmos que podem ser instanciados para interpretação de gráficos em diversos domínios. Os modelos são representados em três níveis semânticos e aplicam o conceito de ancoramento simbólico (symbol grounding) para mapear as primitivas entre os níveis. Os algoritmos de interpretação propostos fazem a interação entre o raciocínio simbólico de alto nível e os algoritmos de processamento de sinal para os dados brutos dos gráficos analisados. Para demonstrar a aplicabilidade do framework S-Chart, foi desenvolvido o sistema InteliStrata, uma aplicação no domínio da Geologia, voltada para interpretação semântica de gráficos de perfis de poço. Utilizando a aplicação, foram interpretados dois perfis de raios gama capturados em poços de exploração, de modo que o sistema identificasse a presença de Sequências Estratigráficas e superfícies de inundação máximas. Os resultados foram comparados com a interpretação de um geólogo especialista sobre os mesmos dados. O sistema aponta as mesmas sequências já identificadas e oferece outras opções de interpretação compatíveis com as do geólogo utilizando os mesmos dados. O framework S-Chart tem seus pontos fortes nos seus modelos representação de conhecimento visual independentes de domínio, que permitem a utilização do mesmo arcabouço em diferentes aplicações e, em especial, no seu modelo de ancoramento simbólico entre primitivas de representação. |
| publishDate |
2009 |
| dc.date.accessioned.fl_str_mv |
2009-08-22T04:18:02Z |
| dc.date.issued.fl_str_mv |
2009 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/17039 |
| dc.identifier.nrb.pt_BR.fl_str_mv |
000710038 |
| url |
http://hdl.handle.net/10183/17039 |
| identifier_str_mv |
000710038 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
| instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
| instacron_str |
UFRGS |
| institution |
UFRGS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/17039/1/000710038.pdf http://www.lume.ufrgs.br/bitstream/10183/17039/2/000710038.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/17039/3/000710038.pdf.jpg |
| bitstream.checksum.fl_str_mv |
107ae93433e37abbf7997dbfb60a902a fe4c386fa0df6dae6342f8c72806c628 be1411962e441194a411238ec1fc8ae5 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
| repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
| _version_ |
1831315862679715840 |