Exportação concluída — 

Orpheo : uma estrutura de trabalho para integração dos paradigmas de aprendizado supervisionado e não-supervisionado

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: Prado, Hercules Antonio do
Orientador(a): Engel, Paulo Martins
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/1858
Resumo: Esta tese apresenta contribuições ao processo de Descoberta de Conhecimento em Bases de Dados (DCBD). DCBD pode ser entendido como um conjunto de técnicas automatizadas – ou semi-automatizadas – otimizadas para extrair conhecimento a partir de grandes bases de dados. Assim, o já, de longa data, praticado processo de descoberta de conhecimento passa a contar com aprimoramentos que o tornam mais fácil de ser realizado. A partir dessa visão, bem conhecidos algoritmos de Estatística e de Aprendizado de Máquina passam a funcionar com desempenho aceitável sobre bases de dados cada vez maiores. Da mesma forma, tarefas como coleta, limpeza e transformação de dados e seleção de atributos, parâmetros e modelos recebem um suporte que facilita cada vez mais a sua execução. A contribuição principal desta tese consiste na aplicação dessa visão para a otimização da descoberta de conhecimento a partir de dados não-classificados. Adicionalmente, são apresentadas algumas contribuições sobre o Modelo Neural Combinatório (MNC), um sistema híbrido neurossimbólico para classificação que elegemos como foco de trabalho. Quanto à principal contribuição, percebeu-se que a descoberta de conhecimento a partir de dados não-classificados, em geral, é dividida em dois subprocessos: identificação de agrupamentos (aprendizado não-supervisionado) seguida de classificação (aprendizado supervisionado). Esses subprocessos correspondem às tarefas de rotulagem dos itens de dados e obtenção das correlações entre os atributos da entrada e os rótulos. Não encontramos outra razão para que haja essa separação que as limitações inerentes aos algoritmos específicos. Uma dessas limitações, por exemplo, é a necessidade de iteração de muitos deles buscando a convergência para um determinado modelo. Isto obriga a que o algoritmo realize várias leituras da base de dados, o que, para Mineração de Dados, é proibitivo. A partir dos avanços em DCBD, particularmente com o desenvolvimento de algoritmos de aprendizado que realizam sua tarefa em apenas uma leitura dos dados, fica evidente a possibilidade de se reduzir o número de acessos na realização do processo completo. Nossa contribuição, nesse caso, se materializa na proposta de uma estrutura de trabalho para integração dos dois paradigmas e a implementação de um protótipo dessa estrutura utilizando-se os algoritmos de aprendizado ART1, para identificação de agrupamentos, e MNC, para a tarefa de classificação. É também apresentada uma aplicação no mapeamento de áreas homogêneas de plantio de trigo no Brasil, de 1975 a 1999. Com relação às contribuições sobre o MNC são apresentados: (a) uma variante do algoritmo de treinamento que permite uma redução significativa do tamanho do modelo após o aprendizado; (b) um estudo sobre a redução da complexidade do modelo com o uso de máquinas de comitê; (c) uma técnica, usando o método do envoltório, para poda controlada do modelo final e (d) uma abordagem para tratamento de inconsistências e perda de conhecimento que podem ocorrer na construção do modelo.
id URGS_b75eb0ec7cae7591a8d1ca5d72be5944
oai_identifier_str oai:www.lume.ufrgs.br:10183/1858
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Prado, Hercules Antonio doEngel, Paulo Martins2007-06-06T17:18:47Z2001http://hdl.handle.net/10183/1858000310656Esta tese apresenta contribuições ao processo de Descoberta de Conhecimento em Bases de Dados (DCBD). DCBD pode ser entendido como um conjunto de técnicas automatizadas – ou semi-automatizadas – otimizadas para extrair conhecimento a partir de grandes bases de dados. Assim, o já, de longa data, praticado processo de descoberta de conhecimento passa a contar com aprimoramentos que o tornam mais fácil de ser realizado. A partir dessa visão, bem conhecidos algoritmos de Estatística e de Aprendizado de Máquina passam a funcionar com desempenho aceitável sobre bases de dados cada vez maiores. Da mesma forma, tarefas como coleta, limpeza e transformação de dados e seleção de atributos, parâmetros e modelos recebem um suporte que facilita cada vez mais a sua execução. A contribuição principal desta tese consiste na aplicação dessa visão para a otimização da descoberta de conhecimento a partir de dados não-classificados. Adicionalmente, são apresentadas algumas contribuições sobre o Modelo Neural Combinatório (MNC), um sistema híbrido neurossimbólico para classificação que elegemos como foco de trabalho. Quanto à principal contribuição, percebeu-se que a descoberta de conhecimento a partir de dados não-classificados, em geral, é dividida em dois subprocessos: identificação de agrupamentos (aprendizado não-supervisionado) seguida de classificação (aprendizado supervisionado). Esses subprocessos correspondem às tarefas de rotulagem dos itens de dados e obtenção das correlações entre os atributos da entrada e os rótulos. Não encontramos outra razão para que haja essa separação que as limitações inerentes aos algoritmos específicos. Uma dessas limitações, por exemplo, é a necessidade de iteração de muitos deles buscando a convergência para um determinado modelo. Isto obriga a que o algoritmo realize várias leituras da base de dados, o que, para Mineração de Dados, é proibitivo. A partir dos avanços em DCBD, particularmente com o desenvolvimento de algoritmos de aprendizado que realizam sua tarefa em apenas uma leitura dos dados, fica evidente a possibilidade de se reduzir o número de acessos na realização do processo completo. Nossa contribuição, nesse caso, se materializa na proposta de uma estrutura de trabalho para integração dos dois paradigmas e a implementação de um protótipo dessa estrutura utilizando-se os algoritmos de aprendizado ART1, para identificação de agrupamentos, e MNC, para a tarefa de classificação. É também apresentada uma aplicação no mapeamento de áreas homogêneas de plantio de trigo no Brasil, de 1975 a 1999. Com relação às contribuições sobre o MNC são apresentados: (a) uma variante do algoritmo de treinamento que permite uma redução significativa do tamanho do modelo após o aprendizado; (b) um estudo sobre a redução da complexidade do modelo com o uso de máquinas de comitê; (c) uma técnica, usando o método do envoltório, para poda controlada do modelo final e (d) uma abordagem para tratamento de inconsistências e perda de conhecimento que podem ocorrer na construção do modelo.application/pdfporBanco : DadosDescoberta : ConhecimentoMineracao : DadosBases : DadosOrpheo : uma estrutura de trabalho para integração dos paradigmas de aprendizado supervisionado e não-supervisionadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2001doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000310656.pdf000310656.pdfTexto completoapplication/pdf1237235http://www.lume.ufrgs.br/bitstream/10183/1858/1/000310656.pdf6b11c62805bd230cc710834e805270d4MD51TEXT000310656.pdf.txt000310656.pdf.txtExtracted Texttext/plain310236http://www.lume.ufrgs.br/bitstream/10183/1858/2/000310656.pdf.txtba021210436463e9a527aa8a0f76b9f8MD52THUMBNAIL000310656.pdf.jpg000310656.pdf.jpgGenerated Thumbnailimage/jpeg1209http://www.lume.ufrgs.br/bitstream/10183/1858/3/000310656.pdf.jpg488cae5bf2d5ebc2fb6dbd2c0fc2bd0aMD5310183/18582018-10-15 09:00:32.476oai:www.lume.ufrgs.br:10183/1858Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-15T12:00:32Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Orpheo : uma estrutura de trabalho para integração dos paradigmas de aprendizado supervisionado e não-supervisionado
title Orpheo : uma estrutura de trabalho para integração dos paradigmas de aprendizado supervisionado e não-supervisionado
spellingShingle Orpheo : uma estrutura de trabalho para integração dos paradigmas de aprendizado supervisionado e não-supervisionado
Prado, Hercules Antonio do
Banco : Dados
Descoberta : Conhecimento
Mineracao : Dados
Bases : Dados
title_short Orpheo : uma estrutura de trabalho para integração dos paradigmas de aprendizado supervisionado e não-supervisionado
title_full Orpheo : uma estrutura de trabalho para integração dos paradigmas de aprendizado supervisionado e não-supervisionado
title_fullStr Orpheo : uma estrutura de trabalho para integração dos paradigmas de aprendizado supervisionado e não-supervisionado
title_full_unstemmed Orpheo : uma estrutura de trabalho para integração dos paradigmas de aprendizado supervisionado e não-supervisionado
title_sort Orpheo : uma estrutura de trabalho para integração dos paradigmas de aprendizado supervisionado e não-supervisionado
author Prado, Hercules Antonio do
author_facet Prado, Hercules Antonio do
author_role author
dc.contributor.author.fl_str_mv Prado, Hercules Antonio do
dc.contributor.advisor1.fl_str_mv Engel, Paulo Martins
contributor_str_mv Engel, Paulo Martins
dc.subject.por.fl_str_mv Banco : Dados
Descoberta : Conhecimento
Mineracao : Dados
Bases : Dados
topic Banco : Dados
Descoberta : Conhecimento
Mineracao : Dados
Bases : Dados
description Esta tese apresenta contribuições ao processo de Descoberta de Conhecimento em Bases de Dados (DCBD). DCBD pode ser entendido como um conjunto de técnicas automatizadas – ou semi-automatizadas – otimizadas para extrair conhecimento a partir de grandes bases de dados. Assim, o já, de longa data, praticado processo de descoberta de conhecimento passa a contar com aprimoramentos que o tornam mais fácil de ser realizado. A partir dessa visão, bem conhecidos algoritmos de Estatística e de Aprendizado de Máquina passam a funcionar com desempenho aceitável sobre bases de dados cada vez maiores. Da mesma forma, tarefas como coleta, limpeza e transformação de dados e seleção de atributos, parâmetros e modelos recebem um suporte que facilita cada vez mais a sua execução. A contribuição principal desta tese consiste na aplicação dessa visão para a otimização da descoberta de conhecimento a partir de dados não-classificados. Adicionalmente, são apresentadas algumas contribuições sobre o Modelo Neural Combinatório (MNC), um sistema híbrido neurossimbólico para classificação que elegemos como foco de trabalho. Quanto à principal contribuição, percebeu-se que a descoberta de conhecimento a partir de dados não-classificados, em geral, é dividida em dois subprocessos: identificação de agrupamentos (aprendizado não-supervisionado) seguida de classificação (aprendizado supervisionado). Esses subprocessos correspondem às tarefas de rotulagem dos itens de dados e obtenção das correlações entre os atributos da entrada e os rótulos. Não encontramos outra razão para que haja essa separação que as limitações inerentes aos algoritmos específicos. Uma dessas limitações, por exemplo, é a necessidade de iteração de muitos deles buscando a convergência para um determinado modelo. Isto obriga a que o algoritmo realize várias leituras da base de dados, o que, para Mineração de Dados, é proibitivo. A partir dos avanços em DCBD, particularmente com o desenvolvimento de algoritmos de aprendizado que realizam sua tarefa em apenas uma leitura dos dados, fica evidente a possibilidade de se reduzir o número de acessos na realização do processo completo. Nossa contribuição, nesse caso, se materializa na proposta de uma estrutura de trabalho para integração dos dois paradigmas e a implementação de um protótipo dessa estrutura utilizando-se os algoritmos de aprendizado ART1, para identificação de agrupamentos, e MNC, para a tarefa de classificação. É também apresentada uma aplicação no mapeamento de áreas homogêneas de plantio de trigo no Brasil, de 1975 a 1999. Com relação às contribuições sobre o MNC são apresentados: (a) uma variante do algoritmo de treinamento que permite uma redução significativa do tamanho do modelo após o aprendizado; (b) um estudo sobre a redução da complexidade do modelo com o uso de máquinas de comitê; (c) uma técnica, usando o método do envoltório, para poda controlada do modelo final e (d) uma abordagem para tratamento de inconsistências e perda de conhecimento que podem ocorrer na construção do modelo.
publishDate 2001
dc.date.issued.fl_str_mv 2001
dc.date.accessioned.fl_str_mv 2007-06-06T17:18:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/1858
dc.identifier.nrb.pt_BR.fl_str_mv 000310656
url http://hdl.handle.net/10183/1858
identifier_str_mv 000310656
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/1858/1/000310656.pdf
http://www.lume.ufrgs.br/bitstream/10183/1858/2/000310656.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/1858/3/000310656.pdf.jpg
bitstream.checksum.fl_str_mv 6b11c62805bd230cc710834e805270d4
ba021210436463e9a527aa8a0f76b9f8
488cae5bf2d5ebc2fb6dbd2c0fc2bd0a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831315783602405376